Distributional Nonlinear Wave Equations: Well-Posedness and Stabilizability
暫譯: 分佈式非線性波方程:良好定義性與穩定性
Zennir, Khaled, Georgiev, Svetlin G.
- 出版商: de Gruyter
- 出版日期: 2025-01-27
- 售價: $7,430
- 貴賓價: 9.5 折 $7,059
- 語言: 英文
- 頁數: 302
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3111633683
- ISBN-13: 9783111633688
-
相關分類:
工程數學 Engineering-mathematics
海外代購書籍(需單獨結帳)
相關主題
商品描述
The book contains eleven chapters introduced by an introductory description. Qualitative properties for the semilinear dissipative wave equations are discussed in Chapter 2 and Chapter 3 based on the solutions with compactly supported initial data. The purpose of Chapter 4 is to present results according to the well-possednes and behavior f solutions the nonlinear viscoelastic wave equations in weighted spaces. Elements of theory of Kirchhoff problem is introduced in Chapter 5. It is introduced same decay rate of second order evolution equations with density. Chapter 6 is devoted on the original method for Well posedness and general decay for wave equation with logarithmic nonlinearities. In Chapter 7, it is investigated the uniform stabilization of the Petrovsky-Wave nonlinear coupled system. The question of well-posedness and general energy decay of solutions for a system of three wave equations with a nonlinear strong dissipation are investigated in chapter 8 using the weighied. In sofar as Chapter 9 and chapter 10 are concerned with damped nonlinear wave problems in Fourier spaces. The last Chapter 11 analysis the existence/ nonexistence of solutions for structural damped wave equations with nonlinear memory terms in Rn.
商品描述(中文翻譯)
本書包含十一章,並以簡介開場。第二章和第三章討論了基於具有緊支撐初始數據的解的半線性耗散波方程的定性性質。第四章的目的是根據非線性粘彈性波方程在加權空間中的良好適定性和解的行為來呈現結果。第五章介紹了基爾霍夫問題的理論元素。它介紹了具有密度的二階演化方程的相同衰減速率。第六章專注於具有對數非線性的波方程的良好適定性和一般衰減的原始方法。在第七章中,研究了Petrovsky波非線性耦合系統的均勻穩定性。第八章探討了三個波方程系統的良好適定性和解的一般能量衰減問題,該系統具有非線性強耗散,並使用加權進行分析。第九章和第十章則涉及傅立葉空間中的阻尼非線性波問題。最後,第十一章分析了Rn中具有非線性記憶項的結構阻尼波方程的解的存在性/不存在性。
作者簡介
Khaled Zennir: was born in Algeria 1982. He received his PhD in Mathematics in 2013 from Sidi Bel Abbès University, Algeria (Assist. professor). He is now associate Professor at Qassim University, KSA. His research interests lie in Nonlinear Hyperbolic Partial Differential Equations: Global Existence, Blow-Up, and Long Time Behavior.
Svetlin G. Georgiev: (born 05 April 1974, Rouse, Bulgaria) is a mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, dynamic calculus on time scales.
作者簡介(中文翻譯)
Khaled Zennir: 於1982年出生於阿爾及利亞。他於2013年在阿爾及利亞的西迪貝爾阿貝斯大學獲得數學博士學位(助理教授)。目前他是沙烏地阿拉伯卡西姆大學的副教授。他的研究興趣在於非線性雙曲偏微分方程:全局存在性、爆炸現象及長時間行為。
Svetlin G. Georgiev: (1974年4月5日出生於保加利亞的羅斯)是一位數學家,曾在數學的各個領域工作。他目前專注於調和分析、泛函分析、偏微分方程、常微分方程、克利福德分析和四元數分析、積分方程、以及時間尺度上的動態微積分。