Outlier Analysis
暫譯: 異常值分析
Charu C. Aggarwal
- 出版商: Springer
- 出版日期: 2016-12-22
- 售價: $2,800
- 貴賓價: 9.5 折 $2,660
- 語言: 英文
- 頁數: 466
- 裝訂: Hardcover
- ISBN: 3319475770
- ISBN-13: 9783319475776
-
相關分類:
Data-mining
立即出貨 (庫存=1)
買這商品的人也買了...
-
深入淺出設計模式 (Head First Design Patterns)$880$695 -
大象-Thinking in UML, 2/e (書頁有些許瑕疵,不介意再下單)$550$468 -
Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (Hardcover)$1,390$1,362 -
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback) -
資訊與網路安全概論:進入區塊鏈世界, 6/e$780$741 -
Flask 網頁開發, 2/e (Flask Web Development : Developing Web Applications with Python, 2/e)$580$458 -
區塊鏈智慧合約開發與安全防護實作$480$408 -
不只是金融商品:區塊鏈技術用程式碼實作$580$493 -
比特幣out、以太坊in: 超越交易實作區塊鏈技術$580$493 -
PHP 7 & MySQL 網站開發 -- 超威範例集, 3/e$560$442 -
PHP 動態網站系統開發與 Laravel 框架運用$580$493 -
Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Case Studies, 2/e (Hardcover)$1,450$1,421 -
和艦長一起 30 天玩轉 GitLab(iT邦幫忙鐵人賽系列書)$500$390 -
Calculus : Early Transcendentals, 9/e (Metric Version)(Hardcover)$1,460$1,450 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, Nlp, and Transformers Using Tensorflow (Paperback)$2,850$2,708 -
C++ 程式設計的樂趣|範例實作與專題研究的程式設計課 (C++ Crash Course: A Fast-Paced Introduction)$880$748 -
資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$473 -
資安這條路:領航新手的 Web Security 指南,以自建漏洞環境學習網站安全(iT邦幫忙鐵人賽系列書)$680$578 -
Knock Knock! Deep Learning:新手入門深度學習的敲門磚(iT邦幫忙鐵人賽系列書)$560$437 -
機器學習的統計基礎 : 深度學習背後的核心技術$680$537 -
Web 應用系統安全|現代 Web 應用程式開發的資安對策 (Web Application Security)$580$458 -
Keras 大神歸位:深度學習全面進化!用 Python 實作 CNN、RNN、GRU、LSTM、GAN、VAE、Transformer$1,200$948 -
區塊鏈生存指南:帶你用 Python 寫出區塊鏈!【第二版】(iT邦幫忙鐵人賽系列書)$600$468 -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$748
相關主題
商品描述
This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories:
- Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods.
- Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data.
- Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner.
The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
商品描述(中文翻譯)
這本書從計算機科學的角度提供了對異常分析領域的全面覆蓋。它整合了數據挖掘、機器學習和統計學的方法,並在計算框架內進行,因此吸引了多個社群。本書的章節可以分為三個類別:
- 基本算法:第1至第7章討論了異常分析的基本算法,包括概率和統計方法、線性方法、基於接近度的方法、高維(子空間)方法、集成方法和監督方法。
- 特定領域的方法:第8至第12章討論了針對各種數據領域的異常檢測算法,例如文本、類別數據、時間序列數據、離散序列數據、空間數據和網絡數據。
- 應用:第13章專門介紹異常分析的各種應用。對於實務工作者也提供了一些指導。
本書的第二版更加詳細,旨在吸引研究人員和實務工作者。新增了大量有關核方法、一類支持向量機、矩陣分解、神經網絡、異常集成、時間序列方法和子空間方法等主題的材料。它被編寫為教科書,可以用於課堂教學。
