Artificial Intelligence in Medical Imaging: Opportunities, Applications and Risks
暫譯: 醫學影像中的人工智慧:機會、應用與風險
- 出版商: Springer
- 出版日期: 2019-02-07
- 售價: $5,750
- 貴賓價: 9.5 折 $5,463
- 語言: 英文
- 頁數: 373
- 裝訂: Hardcover
- ISBN: 3319948776
- ISBN-13: 9783319948775
-
相關分類:
影像辨識 Image-recognition
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
C++ 編程規範 (C++ Coding Standards: 101 Rules, Guidelines, and Best Practices)$580$493 -
Solar Energy Forecasting and Resource Assessment (Hardcover)$1,780$1,744 -
深入淺出 C#, 3/e (Head First C#, 3/e)$980$774 -
挑戰 PHP / MySQL 程式設計與超強專題特訓班, 3/e (適用PHP5~PHP6)$550$435 -
CentOS 7 建置、管理與伺服器架設實戰$580$452 -
$2,048Hadoop: The Definitive Guide, 4/e (Paperback) -
Simulation with Arena, 6/e (IE-Paperback)$1,200$1,176 -
Hadoop + Spark 大數據巨量分析與機器學習整合開發實戰$620$484 -
$414Python 資料分析與挖掘實戰 -
Effective Modern C++:提昇 C++11 與 C++14 技術的 42個具體作法 (中文版)(Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14)$580$458 -
Digital Signal Processing First, 2/e (DSP First)(IE-Paerback)$1,350$1,323 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
Deep Learning with Python (Paperback)$1,760$1,672 -
實戰 ROS 機器人自作|使用 Raspberry Pi$520$411 -
Raspberry Pi 最佳入門與應用 (Python)(第二版)(附範例光碟)$430$387 -
Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence (Paperback)$2,200$2,090 -
Deep Learning$900$855 -
物聯網原來這麼近:立即手動實作一個 (熱銷版)$550$468 -
物聯網實戰:使用樹莓派 /Arduino/ESP8266 NodeMCU/Python/Node-RED 打造安全監控系統$500$390 -
物聯網 Python 整合實戰 (舊名: 王者歸來:精通物聯網及Python)$890$757 -
機器學習的數學基礎 : AI、深度學習打底必讀$580$458 -
物聯網概論$480$432 -
深度學習的數學地圖 -- 用 Python 實作神經網路的數學模型 (附數學快查學習地圖)$580$458 -
電腦網路概論, 10/e$550$495 -
工業4.0 的物聯網智慧工廠應用與實作:使用 Arduino.Node-RED.MySQL.Node.js$500$199
相關主題
商品描述
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
商品描述(中文翻譯)
本書提供了人工智慧(AI)在醫療保健和放射學應用中持續演變的全面概述,使讀者能夠深入了解AI的技術背景以及新興技術對醫學影像的影響。在介紹放射學中的變革者,例如深度學習技術之後,書中描述了AI在計算科學和醫學影像計算中的技術演變,並解釋了基本原則以及AI的類型和子類型。隨後的章節探討了影像生物標記的使用、AI應用的開發和驗證,以及與大數據在放射學中日益增長的角色相關的各種方面和問題。接著,書中概述了AI在不同身體部位的多樣化臨床應用,展示了它們為日常放射學實踐增值的能力。最後一部分集中於AI對放射學的影響及其對放射科醫師的意涵,例如在培訓方面。本書由放射科醫師和IT專業人士撰寫,對放射科醫師、醫學/臨床物理學家、IT專家和影像資訊專業人士將具有很高的價值。
