Web安全之強化學習與GAN Web安全之强化学习与GAN

劉焱

  • 出版商: 機械工業出版社
  • 出版日期: 2018-04-01
  • 定價: $474
  • 售價: $474
  • 貴賓價: 9.5$450
  • 語言: 簡體中文
  • 頁數: 262
  • 裝訂: 平裝
  • ISBN: 7111593456
  • ISBN-13: 9787111593454
  • 相關分類: Reinforcement 強化學習

立即出貨

  • B07cnc323x 02 amzn
  • B07cnc323x 03 amzn
B07cnc323x 02 amzn

買這商品的人也買了...

相關活動主題

20181003 %e7%b0%a1%e9%ab%94%e6%9c%80%e6%96%b0%e5%88%b0%e8%b2%a8 small

商品描述

本書是作者AI安全領域三部曲的第三部,重點介紹強化學習和生成對抗網絡的基礎知識和實際應用,特別是在安全領域中攻防建設的實際應用。全書共14章,從AI安全攻防的基礎知識,到智能工具的打造,全面介紹如何使用AI做安全建設的方法。內容包括如何衡量機器學習算法的性能以及集成學習的基本知識,強化學習中單智能體的強化學習,Keras下強化學習算法的一種實現:Keras-rl,強化學習領域經常使用的OpenAIGym環境;基於機器學習的惡意程序識別技術以及常見的惡意程序免殺方法,如何使用強化學習生成免殺程序,並進一步提升殺毒軟件的檢測能力,提升WAF的防護能力,提升反垃圾郵件的檢測能力;生成對抗網絡的基礎知識,以及針對機器學習、強化學習的幾種攻擊方式。

作者簡介

劉焱百度安全Web防護產品線負責人,負責百度安全Web安全產品,包括防DDoS、Web應用防火牆、Web威脅感知、服務器安全以及安全數據分析等,具有近十年雲安全及企業安全從業經歷,全程參與了百度企業安全建設。研究興趣包括機器學習、Web安全、殭屍網絡、威脅情報等。他是FreeBuf專欄作家、i春秋知名講師,多次在OWASP 、電子學會年會等發表演講,參與編寫了《大數據安全標準白皮書》。他還建立了微信公眾號:“兜哥帶你學安全”,發布了大量信息安全技術知識。

目錄大綱

前言
第1章AI安全之攻與防1 
1.1 AI設備的安全2 
1.2 AI模型的安全3 
1.3使用AI進行安全建設4 
1.4使用AI進行攻擊9 
1.5本章小結9 

第2章打造機器學習工具箱11 
2.1 TensorFlow11 
2.2 Keras13 
2.3 Anaconda14 
2.4 OpenAI Gym19 
2.5 Keras—rl19 
2.6 XGBoost19 
2.7 GPU服務器20 
2.8本章小結23 

第3章性能衡量與集成學習24 
3.1常見性能衡量指標24 
3.1.1測試數據24 
3.1. 2混淆矩陣25 
3.1.3準確率與召回率25 
3.1.4準確度與F1—Score26 
3.1.5 ROC與AUC27 
3.2集成學習28 
3.2.1 Boosting算法29 
3.2.2 Bagging算法31 
3.3本章小結32 

第4章Keras基礎知識34 
4.1 Keras簡介34 
4.2 Keras常用模型35
4.2.1序列模型35 
4.2.2函數式模型35 
4.3 Keras的網絡層36 
4.3.1模型可視化36 
4.3.2常用層38 
4.3.3損失函數44 
4.3.4優化器44 
4.3.5模型的保存與加載45 
4.3.6基於全連接識別MNIST45 
4.3.7卷積層和池化層47 
4.3.8基於卷積識別MNIST49 
4.3.9循環層49 
4.3.10基於LSTM進行IMDB情感分類52 
4.4本章小結54 

第5章單智力體強化學習55 
5.1馬爾可夫決策過程55 
5.2 Q函數56 
5.3貪婪算法與—貪婪算法57 
5.4 Sarsa算法59 
案例5—1:使用Sarsa算法處理金幣問題60 
5.5 Q Learning算法62 
案例5 —2:使用Q Learning算法處理金幣問題63 
5.6 Deep Q Network算法64 
案例5—3:使用DQN算法處理CartPole問題65 
5.7本章小結71 

第6章Keras—rl簡介72 
6.1 Keras—rl智能體介紹73 
6.2 Keras—rl智能體通用API73 
6.3 Keras—rl常用對象75
案例6—1:在Keras—rl下使用SARSA算法處理CartPole問題75 
案例6—2:在Keras—rl下使用DQN算法處理CartPole問題77 
案例6—3:在Keras—rl下使用DQN算法玩Atari遊戲78 
6.4本章小結86 

第7章OpenAI Gym簡介87 
7.1 OpenAI87 
7.2 OpenAI Gym88 
7.3 Hello World!OpenAI Gym89 
7.4編寫OpenAI Gym環境92 
7.5本章小結98 

第8章惡意程序檢測99 
8.1 PE文件格式概述100 
8.2 PE文件的節104 
8.3 PE文件特徵提取107 
8.4 PE文件節的特徵提取119 
8.5檢測模型121 
8.6本章小結129 

第9章惡意程序免殺技術130 
9.1 LIEF庫簡介130 
9.2文件末尾追加隨機內容132 
9.3追加導入表132 
9.4改變節名稱133 
9.5增加節134 
9.6節內追加內容135 
9.7 UPX加殼135 
9.8刪除簽名137 
9.9刪除debug信息138 
9.10置空可選頭的交驗和138 
9.11本章小結138

第10章智能提升惡意程序檢測能力139 
10.1 Gym—Malware簡介139 
10.2 Gym—Malware架構141 
10.2.1 PEFeatureExtractor141 
10.2.2 Interface143 
10.2.3 MalwareManipulator143 
10.2.4 DQNAgent144 
10.2.5 MalwareEnv145 
10.3惡意程序樣本148 
10.4本章小結149 

第11章智能提升WAF的防護能力150 
11.1常見XSS攻擊方式151 
11.2常見XSS防禦方式152 
11.3常見XSS繞過方式153 
11.4 Gym—WAF架構155 
11.4.1 Features類156 
11.4.2 Xss_Manipulator類156 
11.4. 3 DQNAgent類160 
11.4.4 WafEnv_v0類161 
11.4.5 Waf_Check類162 
11.5效果驗證163 
11.6本章小結164 

第12章智能提升垃圾郵件檢測能力165 
12.1垃圾郵件檢測技術166 
12.1.1數據集166 
12.1.2特徵提取168 
12.1.3模型訓練與效果驗證171
12.1.4模型的使用172 
12.2垃圾郵件檢測繞過技術173 
12.2.1隨機增加TAB174 
12.2.2隨機增加回車174 
12.2.3大小寫混淆175 
12.2.4隨機增加換行符175 
12.2.5隨機增加連字符176 
12.2.6使用錯別字176 
12.3 Gym—Spam架構177 
12.3.1 Features類178 
12.3.2 Spam_Manipulator類178 
12.3.3 DQNAgent類179 
12.3.4 SpamEnv_v0類181 
12.4效果驗證182 
12.5本章小結183 

第13章生成對抗網絡184 
13.1 GAN基本原理184 
13.2 GAN系統架構185 
13.2.1噪音源185 
13.2.2 Generator186 
13.2.3 Discriminator187 
13.2.4對抗模型188 
13.3 GAN188 
13.4 DCGAN194 
13.5 ACGAN202 
13.6 WGAN210 
13.7本章小結217 

第14章攻擊機器學習模型218 
14.1攻擊圖像分類模型218
14.1.1常見圖像分類模型219 
14.1.2梯度算法和損失函數222 
14.1.3基於梯度上升的攻擊原理224 
14.1.4基於梯度上升的算法實現226 
14.1.5基於FGSM的攻擊原理228 
14.1.6基於FGSM攻擊的算法實現229 
14.2攻擊其他模型231 
案例14—1:攻擊手寫數字識別模型233 
案例14—2:攻擊自編碼器240 
案例14—3:攻擊差分自編碼器249 
14.3本章小結262