機器閱讀理解 (算法與實踐)
朱晨光
- 出版商: 機械工業
- 出版日期: 2020-04-01
- 定價: $474
- 售價: 7.9 折 $374
- 語言: 簡體中文
- 頁數: 230
- 裝訂: 平裝
- ISBN: 7111649508
- ISBN-13: 9787111649502
-
相關分類:
Natural Language Processing
立即出貨
買這商品的人也買了...
-
$790Java for COBOL Programmers, 3/e (Paperback) -
$207大型主機 CICS 事務處理教程 -
自然語言處理:用人工智慧看懂中文$690$587 -
$327文本上的算法 深入淺出自然語言處理 -
$505機器學習即服務:將 Python 機器學習創意快速轉變為雲端 Web 應用程序 (Monetizing Machine Learning: Quickly Turn Python ML Ideas into Web Applications on the Serverless Cloud) -
機器學習開發神器!Google Cloud Platform 雲端開發應用超入門$490$417 -
人工智能算法 捲1 基礎算法$354$336 -
$422Kaldi 語音識別實戰 -
$327TensorFlow 2.0 深度學習從零開始學 -
$347Python 數據可視化之 Matplotlib 與 Pyecharts -
$509Python 大數據分析與機器學習商業案例實戰 -
$611文本機器學習 -
Music Data Analysis: Foundations and Applications$2,750$2,613 -
$305Python Web 開發案例教程 — 使用 Flask、Tornado、Django (慕課版) -
Towards Tensorflow 2.0:無痛打造AI模型(iT邦幫忙鐵人賽系列書)$500$390 -
$327機器學習基礎 建模與問題求解 -
$403會話式AI:自然語言處理與人機交互 -
自然語言處理實戰 : 利用 Python 理解、分析和生成文本$594$564 -
$594聲紋技術:從核心算法到工程實踐 -
Python 不廢話,一行程式碼|像高手般寫出簡潔有力的 Python 程式碼 (Python One-Liners: Write Concise, Eloquent Python Like a Professional)$450$356 -
$305Python 中文自然語言處理基礎與實戰 -
AI 集客力!FB + IG + LINE + ChatGPT 全效社群行銷術:提供社群平台的全方位知識,結合 ChatGPT 應用加持,提升行銷效果$650$507 -
世界第1強 AI ChatGPT Turbo 自學魔法寶典- Data Analyst +GPTs + DALL-E + Copilot + Prompt +Midjourney + Suno + D-ID + Runway + Gamma (頂級雪銅紙全彩印刷版)$699$552 -
AI 神助攻!程式設計新境界 – GitHub Copilot 開發 Python 如虎添翼 : 提示工程、問題分解、測試案例、除錯$560$442 -
$469大模型安全、監理與合規
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
87折
$360芯片的較量 (日美半導體風雲) -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
87折
$981深度學習:基礎與概念 -
85折
$505GitHub Copilot 編程指南 -
79折
$425Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
87折
$360芯片的較量 (日美半導體風雲) -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現)
相關主題
商品描述
微軟高級研究員撰寫,剖析機器閱讀理解支撐技術、模型架構、前沿算法、模型SDNet源碼與落地應用。
全書分為三篇,共8章內容。
基礎篇(第1~3章),介紹機器閱讀理解的基礎知識和關鍵支撐技術,涵蓋機器閱讀理解任務的定義,
閱讀理解模型中常用的自然語言處理技術和深度學習網絡模塊,
例如如何讓計算機表示文章和問題、做多項選擇題及生成回答等。
架構篇(第4~6章),介紹解決各類機器閱讀理解任務的基本模型架構和前沿算法,
並剖析對機器閱讀理解研究有著重要影響的預訓練模型(如BERT和GPT)。
實戰篇(第7~8章),包括筆者在2018年獲得CoQA對話閱讀理解競賽第一名時所用的模型SDNet的代碼解讀,
機器閱讀理解在各種工業界應用中的具體落地過程和挑戰,以及筆者對於機器閱讀理解未來發展方向的思考。
作者簡介
朱晨光
微軟公司自然語言處理高級研究員、斯坦福大學計算機系博士。
負責自然語言處理研究與開發、對話機器人的語義理解、機器閱讀理解研究等,
精通人工智能、深度學習與自然語言處理,尤其擅長機器閱讀理解、文本總結、對話處理等方向。
帶領團隊負責客服對話機器人的語義理解與分析,進行機器閱讀理解研究,
在斯坦福大學舉辦的SQuAD 1.0機器閱讀理解競賽中獲得全球名,
在CoQA對話閱讀理解競賽中成績超過人類水平並獲得名。
在人工智能和自然語言處理會議ICLR、ACL、EMNLP、NAACL、ICLR中發表多篇文章。
目錄大綱
目錄
序一
序二
前言
第一篇基礎篇
第1章機器閱讀理解與關鍵支撐技術
1.1機器閱讀理解任務
1.1.1機器閱讀理解模型
1.1.2機器閱讀理解的應用
1.2自然語言處理
1.2.1研究現狀
1.2 .2仍需解決的問題
1.3深度學習
1.3.1深度學習的特點
1.3.2深度學習的成果
1.4機器閱讀理解任務的測評方式
1.4.1機器閱讀理解的答案形式
1.4.2自由回答式答案評分標準ROUGE
1.5機器閱讀理解數據集
1.5.1單段落式數據集
1.5.2多段落式數據集
1.5.3文本庫式數據集
1.6機器閱讀理解數據的生成
1.6.1數據集的生成
1.6.2標準答案的生成
1.6.3如何設計高質量的數據集
1.7本章小結
第2章自然語言處理基礎
2.1文本分詞
2.1.1中文分詞
2.1.2英文分詞
2.1.3字節對編碼BPE
2.2語言處理的基石:詞向量
2.2.1詞的向量化
2.2.2 Word2vec詞向量
2.3命名實體和詞性標註
2.3.1命名實體識別
2.3.2詞性標註
2.4語言模型
2.4.1 N元模型
2.4.2語言模型的評測
2.5本章小結
第3章自然語言處理中的深度學習
3.1從詞向量到文本向量
3.1.1利用RNN的最終狀態
3.1.2利用CNN和池化
3.1.3利用含參加權和
3.2讓計算機做選擇題:自然語言理解
3.2.1網絡模型
3.2.2實戰:文本分類
3.3讓計算機寫文章:自然語言生成
3.3.1網絡模型
3.3.2實戰:生成文本
3.3.3集束搜索
3.4讓計算機專心致誌:註意力機制
3.4.1註意力機制的計算
3.4.2實戰:利用內積函數計算註意力
3.4.3序列到序列模型
3.5本章小結
第二篇架構篇
第三篇實戰篇
