深度學習進階:捲積神經網絡和對象檢測 Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection
Umberto Michelucci 陶陽 李亞楠譯譯
- 出版商: 機械工業
- 出版日期: 2020-07-01
- 定價: $474
- 售價: 7.9 折 $374
- 語言: 簡體中文
- 頁數: 220
- 裝訂: 平裝
- ISBN: 7111660927
- ISBN-13: 9787111660927
-
相關分類:
DeepLearning
- 此書翻譯自: Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$408OCA 認證考試指南 (1Z0-062 Oracle Database 12c 安裝與管理) -
$458C語言接口與實現 創建可重用軟件的技術 -
$474大資料採擷(系統方法與實例分析)-大資料技術叢書 -
$288深度學習導論及案例分析 -
$594精通 Oracle SQL, 2/e (Pro Oracle SQL, 2/e) -
OCA Oracle Database SQL Exam Guide (Exam 1Z0-071) (Oracle Press)$2,230$2,119 -
$199統計學七支柱 -
$403深度學習 : 捲積神經網絡從入門到精通 -
$303電腦病毒與惡意代碼 — 原理、技術及防範, 4/e -
$422深入理解神經網絡 : 從邏輯回歸到 CNN -
STM32F1 開發標準教程$474$450 -
低功耗設計精解$774$735 -
$327TensorFlow 2.0 深度學習從零開始學 -
Python 機器學習超進化:AI影像辨識跨界應用實戰 (附100分鐘影像處理入門影音教學/範例程式)$450$356 -
$760計算機視覺:原理、算法、應用及學習, 5/e -
超圖解 ESP32 深度實作$880$695 -
$327EDA 技術與 Verilog HDL -
科學之路:人、機器與未來$528$502 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
打好 AI 的基礎:一探機器學習底層數學運作$880$695 -
$959數值分析, 10/e (Numerical Analysis, 10/e) -
計算機病毒學$648$616 -
$454機器學習算法與實現 — Python 編程與應用實例 -
$374Keras 深度學習開發實戰 -
$414PyTorch 語音識別實戰
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
75折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$375 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書包含捲積神經網絡的核心算法的複雜細節和精妙內容。
在本書中,你能學到有關使用Keras和TensorFlow實現CNN和對象檢測的高級主題。
在學習的過程中,你會看到CNN中的基本操作,例如捲積和池化,然後學習更高級架構,例如初始網絡、ResNet等。
在學習理論主題的同時,你將學到很多Keras的高效應用技巧,包括如何使用自定義回調類自定義Keras中的日誌、
Eager Execution的概念以及如何在模型中使用它。
最後,本書將研究對象檢測的工作原理,並使用Keras和TensorFlow構建YOLO算法的完整實現。
學習完本書時,你將會使用Keras實現各種模型,並學到許多高級技巧,使你的技能更上一層樓。
本書包含以下內容捲積神經網絡和對象檢測的工作原理。
如何將權重和模型保存到磁盤上。
如何暫停訓練並重新啟動。
如何在代碼中使用硬件加速(GPU)。
如何使用Dataset TensorFlow抽象、使用預訓練的模型和進行遷移學習。
如何在預訓練的網絡中刪除和添加層,以使其適應特定項目。
如何將經過預訓練的模型(例如Alexnet和VGG16)應用於新數據集。
作者簡介
李亞楠
1989年生,漢族,河南商丘人,2017年畢業於浙江師範大學,獲計算機科學與技術專業碩士學位。
現任職於廣東科技學院,講師。
2019年5月參加在浙江大學舉辦的“2019年全國高校深度學習師資培訓班”,並順利結業。
主要研究方向為粗糙集、數據挖掘和深度學習。
目錄大綱
目錄
前言
致謝
第1章簡介和設置開發環境1
1.1 GitHub存儲庫和配套網站2
1.2必備的數學知識3
1.3 Python開發環境3
1.3.1 Google Colab 4
1.3.2 Anaconda 6
1.3.3 Docker映像14
1.3. 4你選擇哪個選項18
第2章TensorFlow:高級主題20
2.1 Eager Execution簡介21
2.1.1啟用Eager Execution 21
2.1.2 Eager Execution多項式擬合22
2.1.3應用Eager Execution的MNIST數據分類26
2.2 TensorFlow和Numpy兼容性30
2.3硬件加速30
2.3.1檢測GPU的可用性30
2.3.2設備名稱31
2.3.3顯式設備使用32
2.3.4 GPU加速器演示:矩陣乘法33
2.3.5 MNIST示例上的GPU加速效果34
2.4僅特定層訓練36
2.4.1僅特定層訓練示例37
2.4.2層移除40
2.5 Keras回調函數42
2.5.1自定義回調類42
2.5.2自定義回調類示例44
2.6模型存儲與加載47
2.6.1手動保存權重52
2.6.2保存整個模型53
2.7數據集抽像類53
2.7.1遍歷數據集55
2.7.2簡單批處理56
2.7.3使用MNIST數據集進行簡單批處理57
2.7.4在Eager Execution模式下使用tf.data.Dataset 60
2.8本章小結60
第3章捲積神經網絡的基礎61
3.1核和過濾器61
3.2捲積62
3.3捲積示例71
3.4池化77
3.5 CNN的構建基塊81
3.5.1捲積層82
3.5.2池化層83
3.5.3疊加層84
3.6 CNN的權重數量84
3.6.1捲積層84
3.6.2池化層85
3.6.3稠密層85
3.7 CNN的示例:MNIST數據集85
3.8 CNN學習的可視化89
3.8.1 keras.backend.function()簡介89
3.8.2核的作用效果91
3.8.3最大池化的作用效果93
第4章高級CNN與遷移學習95
4.1多通道捲積95
4.2初始網絡的歷史和基礎98
4.2.1初始模塊:初始版本99
4.2.2初始模塊中的參數數量100
4.2.3具有降維功能的初始模塊100
4.3多種成本函數:GoogLeNet 102
4.4 Keras中的初始模塊示例103
4.5偏離:Keras中的自定義損失106
4.6如何使用預先訓練過的網絡108
4.7遷移學習簡介111
4.8貓狗問題114
4.8.1遷移學習的經典方法114
4.8.2遷移學習實驗120
第5章成本函數與風格轉換123
5.1神經網絡模型的構成123
5.1. 1訓練被視為優化問題124
5.1.2具體示例:線性回歸125
5.2成本函數126
5.2.1數學符號126
5.2.2典型成本函數127
5.3神經風格轉換134
5.3.1神經風格轉換背後的數學原理135
5.3.2 Keras中的圖像風格轉換示例139
5.3.3使用神經風格轉換生成剪影145
5.3.4 masking 146
第6章對象分類簡介148
6.1什麼是對象定位148
6.1.1重要的可用數據集150
6.1.2交並比152
6.2一種簡單的對象定位方法:滑動窗口法153
6.3分類和定位159
6.4基於區域的捲積神經網絡161
6.5快速R-CNN 164
6.6更快的R-CNN 165
第7章對象定位:基於Python的實現167
7.1 YOLO方法167
7.1.1 YOLO工作機制168
7.1.2 YOLOv2 170
7.1.3 YOLOv3 171
7.1.4非極大值抑制171
7.1.5損失函數172
7.2 YOLO在Python和OpenCV中的實現173
7.2.1 YOLO的Darknet實現173
7.2.2應用Darknet測試對象檢測175
7.3為特定圖像訓練YOLO模型180
7.4本章小結181
第8章組織學組織分類183
8.1數據分析和準備184
8.2建立模型192
8.3數據增強201
8.3.1水平和垂直移動202
8.3.2垂直翻轉圖像203
8.3.3隨機旋轉圖像204
8.3.4圖像縮放205
8.3.5綜合操作206
8.4帶有數據增強的VGG16 206
8.4.1 fit ()函數207
8.4.2 fit_generator()函數207
8.4.3 train_on_batch()函數208
8.4.4訓練網絡208
8.5現在好好享受209
