Python 強化學習:演算法、核心技術與產業應用 Mastering Reinforcement Learning with Python: Build next-generation, self-learning models using reinforcement learning techniques and best practices
Enes Bilgin 譯者 朱小虎//汪莉娟//張韓昊帝
- 出版商: 機械工業
- 出版日期: 2023-10-08
- 定價: $774
- 售價: 8.5 折 $658
- 語言: 簡體中文
- 頁數: 348
- 裝訂: 平裝
- ISBN: 7111734890
- ISBN-13: 9787111734895
-
相關分類:
Reinforcement
- 此書翻譯自: Mastering Reinforcement Learning with Python: Build next-generation, self-learning models using reinforcement learning techniques and best practices (Paperback)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$403統計學習導論 -- 基於 R應用 -
$250機器學習線性代數基礎 (Python 語言描述) -
人工智能算法 捲1 基礎算法$354$336 -
打造期權自動理財術$500$490 -
C++ 語言的設計和演化 (The Design and Evolution of C++)$594$564 -
小輕快跨平台:王的編輯器 Visual Studio Code 聖經$880$695 -
$403機器學習中的概率統計:Python 語言描述 -
人工智能算法 捲2 受大自然啟發的算法$414$393 -
$568金融中的機器學習 -
內行人才知道的系統設計面試指南$580$458 -
跟我學 Office 2021 (適用Office 2021/2019/2016)$450$356 -
$658情感分析:挖掘觀點、情感和情緒 (原書第2版)(Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, 2/e) -
利用 Python 實現概率、統計及機器學習方法(原書第2版)$714$678 -
$611Python 氣象應用編程 -
$801精通機器學習算法 -
$356強化學習演算法入門 -
$426深度學習的數學——使用Python語言 -
$407漫畫算法與數據結構(大規模數據集) -
$594PyTorch 深度學習指南 捲I :程式設計基礎 -
$556PyTorch 深度學習指南 捲II :電腦視覺 -
$709PyTorch 深度學習指南 捲III :序列與自然語言處理 -
演算法導論, 4/e (Introduction to Algorithms, 4/e)$1,800$1,422 -
LLM 的大開源時代 - Llama 模型精讀實戰$650$514 -
$419特徵工程訓練營 -
深度學習:基礎與概念$1,128$1,072
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書使用受現實世界商業和產業問題啟發的實際範例來教導強化學習技術的相關知識。
本書分為四部分:
第一部分涵蓋強化學習的必要背景,包括定義、數學基礎和強化學習解決方案的概述;
第二部分深入介紹最先進的強化學習演算法
(規模化的深度Q-學習、基於策略的方法、基於模型的方法、多智能體強化學習等),包括每種演算法的優缺點;
第三部分介紹強化學習中的高階技術,包括機器教學、泛化和領域隨機化、元強化學習等主題,
也涵蓋強化學習中有助於改善模型的各種高階主題;
第四部分講解強化學習的各種應用,例如自主系統、供應鏈管理、行銷與金融、智慧城市與網絡安全等,
並討論強化學習領域的一些挑戰及未來方向。
學完本書,你將掌握如何訓練和部署自己的強化學習智能體來解決強化學習問題。
作者簡介
Enes Bilgin
微軟自主系統部門的高級人工智能工程師和技術主管。
他是一名機器學習與運籌學從業者和研究員,在使用Python、TensorFlow和Ray/RLlib為頂級科技公司構建生產系統和模型方面擁有豐富的經驗。
他擁有波士頓大學系統工程碩士學位和博士學位,以及比爾肯特大學工業工程學士學位。
他曾在亞馬遜擔任研究科學家,並在AMD擔任過運籌學研究科學家,
也曾在德州大學奧斯汀分校的麥庫姆斯商學院和德州州立大學的英格拉姆工程學院擔任兼職教師。
目錄大綱
譯者序
前言
作者簡介
審校者簡介
第一部分強化學習基礎
第1章強化學習簡介
1.1 為什麼選擇強化學習
1.2 機器學習的三種範式
1.2.1 監督學習
1.2.2 無監督學習
1.2.3 強化學習
1.3強化學習應用領域與成功案例
1.3.1 遊戲
1.3.2 機器人技術與自主系統
1.3.3 供應鏈
1.3.4 製造業
1.3.5 個人化與推薦系統
1.3.6 智慧城市
1.4 強化學習問題的元素
1.4. 1 強化學習概念
1.4.2 將井字棋遊戲建模為強化學習問題
1.5 設定強化學習環境
1.5.1 硬件需求
1.5.2 作業系統
1.5.3 軟件工具箱
1.6 總結
1.7 參考文獻
第2章多臂老虎機
2.1 探索–利用權衡
2.2 什麼是多臂老虎機問題
2.2.1 問題定義
2.2.2 一個簡單多臂老虎機問題的實驗
2.3 案例研究:在線廣告
2.4 A/B/n測試
2.4.1 符號
2.4.2 應用於線上廣告情境
2.4.3 A/B/n測驗的優缺點
2.5 ε-貪心策略行動
2.5.1 應用於線上廣告情境
2.5.2 ε-貪心策略行動的優缺點
2.6 使用信賴上界進行行動選擇
2.6. 1 應用於線上廣告場景
2.6.2 使用置信上界的優缺點
2.7 湯普森(後)採樣
2.7.1 應用於在線廣告場景
2.7.2 湯普森採樣的優缺點
2.8 總結
2.9 參考文獻
第3章上下文多臂老虎機
第4章馬可夫決策過程的發展
第5章求解強化學習問題
第二部分深度強化學習
第6章規模化的深度Q-學習
第7章基於策略的方法
第8章基於模型的方法
第9章多智能體強化學習
第三部分強化學習中的高階主題
第10章機器教學
第11章泛化與域隨機化
第12章元強化學習
第13章其他高階主題
第四部分強化學習的應用
第14章自主系統
第15章供應鏈管理
第16章行銷、個人化與金融
第17章智慧城市與網絡安全
第18章強化學習領域的挑戰與未來方向
