深度學習與大模型基礎(簡體書)
段小手著
- 出版商: 北京大學
- 出版日期: 2024-06-01
- 定價: $534
- 售價: 8.5 折 $454
- 語言: 簡體中文
- 頁數: 346
- 裝訂: 平裝
- ISBN: 7301349963
- ISBN-13: 9787301349960
-
相關分類:
DeepLearning
立即出貨
買這商品的人也買了...
-
$352OpenCV + TensorFlow 深度學習與電腦視覺實戰 -
人工智能算法 捲1 基礎算法$354$336 -
$199深度學習 -
$422深度學習 — 從神經網絡到深度強化學習的演進 -
人工智能算法 捲2 受大自然啟發的算法$414$393 -
$275基於深度學習的目標檢測與識別技術 -
$760神經網絡與深度學習 -
$403動手學 PyTorch 深度學習建模與應用 -
$403深度學習的幾何學 — 信號處理視角 -
利用 Python 實現概率、統計及機器學習方法(原書第2版)$714$678 -
$801精通機器學習算法 -
$469深度學習:數學基礎、算法模型與實戰 -
$374Keras 深度學習開發實戰 -
$458深度學習與醫學圖像處理 -
基於深度學習的目標檢測原理與應用$648$616 -
$356強化學習演算法入門 -
深度學習的理論基礎與核心算法$594$564 -
$594PyTorch 深度學習指南 捲I :程式設計基礎 -
$709PyTorch 深度學習指南 捲III :序列與自然語言處理 -
$500進化深度學習 -
$301最優化理論與智能算法 -
$509深度學習詳解 -
Python 貝葉斯深度學習$479$455 -
密態深度學習$779$740 -
$796深度學習在推薦系統中的應用
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
《深度學習與大模型基礎》以簡單易懂的語言和有趣的插畫來解釋深度學習中的概念和方法,
生動形象的插圖更容易幫助讀者理解和記憶。
同時, 書中指導讀者將自己的理解製作成短視頻, 以加強學習效果。
另外, 書中也指導讀者在Colab 平臺上實踐。
《深度學習與大模型基礎》內容全面, 從基礎的神經網絡、 捲積神經網絡、 循環神經網絡等入門知識,
到深度學習的應用領域如電腦視覺、 自然語言處理等高階主題都有涉及。
《深度學習與大模型基礎》具有豐富的趣味性、 互動性和實踐性,
可以幫助讀者更好地理解深度學習知識, 並為未來的職業發展打下堅實的基礎。
目錄大綱
第1 章緒論
1. 1 深度學習的前世今生
1. 2 模型複雜度的提升
1. 3 深度學習的名人軼事
第2 章深度學習中的線性代數
2. 1 標量、 向量、矩陣與張量
2 . 2 矩陣的運算
2. 3 單位矩陣與逆矩陣
2. 4 線性相關、生成子空間與範數
2. 5 一些特殊類型的矩陣
2. 6 特徵分解
2. 7 奇異值分解
2.8 Moore-Penrose偽逆
2. 9 跡運算
2. 10 行列式
2. 11 例: 主成分分析
第3 章機率與信息論
3. 1 為什麼要使用機率
3. 2 隨機變量
3. 3 機率分佈
3. 4 邊緣機率
3. 5 條件機率
3. 6 條件機率的鍊式法則
3. 7 條件獨立性
3. 8 期望值、方差和協方差
3. 9 常用機率分佈
3. 10 常用函數及性質
3. 11 貝葉斯規則
3. 12信息論中的交叉熵
3. 13 結構化機率模型
第4 章數值計算
4. 1 上溢與下溢
4. 2 病態條件
4. 3 基於梯度的最佳化方法
4. 4 約束最佳化
4. 5 實例:線性最小二乘
第5 章機器學習基礎
5. 1 什麼是機器學習演算法
5. 2 模型表現的度量
5. 3 過擬合與欠擬合
5. 4 超參數與交叉驗證
5. 5 最大似然估計
5. 6 什麼是隨機梯度下降
5. 7 貝葉斯統計
5. 8 監督學習演算法
5. 9 無監督學習演算法
5. 10 促使深度學習發展的挑戰
第6 章深度前饋網絡
6. 1 什麼是「前饋」
6. 2 隱藏層
6. 3 輸出單元
6. 4 萬能近似性質
6. 5 反向傳播
第7 章深度學習中的正則化
7. 1 參數範數懲罰
7. 2 資料集增強
7. 3 噪聲魯棒性
7. 4 半監督學習
7. 5 多任務學習
7. 6 提前終止
7.7 參數綁定和參數共享
7.8 稀疏表示
7. 9 Bagging 和其他集成方法
7.10 Dropout
7. 11 對抗訓練
第8 章深度模型中的最佳化
8. 1 學習和純最佳化有什麼不同
8. 2 小批量演算法
8. 3 基本演算法
8. 4 參數初始化策略
8. 5 自適應學習率演算法
8. 6 二階近似方法
8. 7 一些最佳化策略
第9 章捲積神經網絡
9. 1 捲積運算
9. 2 為什麼要使用捲積運算
9. 3 池化
9. 4 基本捲積函數的變體
9. 5 捲積核的初始化
第10 章 循環神經網絡
10. 1 展開計算圖
10. 2 循環神經網絡
10. 3 雙向RNN
10. 4 基於編碼-解碼的序列到序列架構
10. 5 深度循環網絡
10. 6 遞歸神經網絡
10. 7 長短期記憶網
10. 8 門控循環單元
10. 9 截斷梯度
第11 章實踐方法論
11. 1 設計流程
11. 2 更多的性能度量方法
11. 3 默認的基準模型
11. 4 要不要收集更多重資料
11. 5 超參數的調節
11. 6 模型調試的重要性
第12 章應用
12. 1 大規模深度學習
12. 2 電腦視覺中的預處理
12. 3 語音辨識
12. 4 自然語言處理
12. 5 推薦系統
12. 6 知識問答系統
第13 章初識大語言模型
13. 1 大語言模型的背景
13. 2 大語言模型的重要性
13. 3 大語言模型的應用場景
13. 4 大語言模型和傳統方法的差異
第14 章大語言模型原理
14. 1 Transformer 架構
14. 2 預訓練
14. 3 微調
14. 4 自回歸訓練
14. 5 掩碼語言模型
第15 章常見的大語言模型
15. 1 GPT 系列模型
15. 2 BERT
15. 3 XLNet
第16 章大語言模型應用———自然語言生成
16. 1 自動文本生成
16. 2 對話系統和聊天機器人
16 . 3 程式碼與技術文件生成
16. 4 創意內容生成
16. 5 國產優秀大語言模型———文心一言
16. 6 國產優秀大語言模型———訊飛星火認知大模型
後 記
