統計學習必學的十個問題 — 理論與實踐
李軒涯、張暐
- 出版商: 清華大學
- 出版日期: 2021-06-01
- 定價: $299
- 售價: 7.9 折 $236
- 語言: 簡體中文
- 頁數: 145
- 裝訂: 平裝
- ISBN: 730257717X
- ISBN-13: 9787302577171
-
相關分類:
Machine Learning、Python
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
無瑕的程式碼-敏捷完整篇-物件導向原則、設計模式與 C# 實踐 (Agile principles, patterns, and practices in C#)$790$616 -
Soft Skills 軟實力|軟體開發人員的生存手冊 (Soft Skills: The software developer's life manual)$520$411 -
為你自己學 Git$500$390 -
無瑕的程式碼-整潔的軟體設計與架構篇 (Clean Architecture: A Craftsman's Guide to Software Structure and Design)$580$452 -
$534稀疏統計學習及其應用 -
I'm From Taiwan / Programmer 阿喵宅造型貼紙7X7公分 (粉色)$69$60 -
阿喵宅開發順利春聯 2入$68$68 -
$270概率論與數理統計 — 基於 Excel -
$479讓工作化繁為簡: 用 Python 實現辦公自動化 -
白話演算法!培養程式設計的邏輯思考 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$520$468 -
比 Docker 再高階一步:使用 Harbor 完成 Helm Chart 容器及鏡像雲端原生管理$880$695 -
資料科學的建模基礎 : 別急著 coding!你知道模型的陷阱嗎?$599$539 -
$559模式識別, 4/e (修訂版)(Pattern Recognition, 4/e) -
最優化導論, 4/e (An Introduction to Optimization, 4/e)$534$507 -
$254Python 深度學習實戰 — 基於 Pytorch -
$236深度學習必學的十個問題 — 理論與實踐 -
$327Python 數據挖掘技術及應用 (微課版) -
$236數據清洗 (微課視頻版) -
$280計算方法 — 數據分析與智能計算初探, 2/e -
$621深度強化學習落地指南 -
$426Python 數據科學實戰 (Data Science with Python) -
$765Python 常用統計算法 -
$305深度強化學習
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
統計學習是機器學習的重要分支,本書兼顧了數學上的理論和代碼實踐,內容主要包括基礎知識和統計學習模型。第1章、第2章結合VC維介紹過擬合的本質,並介紹手動特徵選擇的辦法; 第3章、第4章從最簡單的線性模型出發經過概率統計的解讀而得到分類和回歸算法; 第5章討論不依賴於假設分佈的非參數模型; 第6章介紹將核方法作為一種非線性拓展的技巧,介紹如何將該方法應用到很多算法中,並引出了著名的高斯過程; 第7章以混合高斯作為軟分配聚類的代表性方法,從而引出著名的EM算法; 第8章討論了機器學習的集成算法; 第9章介紹的線性和非線性降維方法將會解決維度災難問題,並且不同於單純的特徵選擇; 第10章討論不依賴於獨立同分佈假設的時間序列算法。 本書適合對於統計學習感興趣的大學生、工程師閱讀參考。閱讀本書需要具備基礎的Python編程技術和基本的數學知識。
作者簡介
李軒涯,單位:百度公司,職務、職稱:高級工程師,性別:男,年齡:33,專業:計算機科學與技術,學歷:博士,研究成果:中國計算機學會傑出會員、常務理事,中國計算機實踐教育聯合會副理事長。現主管百度校企合作、校企聯合人才培養、校園粉絲生態圈,幫助百度技術、人才及產品品牌在高校領域的推廣與影響力傳播。
目錄大綱
第1章 防止過擬合
1.1 過擬合和欠擬合的背後
1.2 性能度量和損失函數
1.3 假設空間和VC維
1.4 偏差方差分解的意義
1.5 正則化和參數綁定
1.6 使用scikit-learn
第2章 特徵選擇
2.1 包裹法Warpper
2.2 過濾法Filter
2.3 嵌入法Embedded
2.4 使用scikit-learn
第3章 回歸算法中的貝葉斯
3.1 快速理解判別式模型和生成式模型
3.2 極大似然估計和平方損失
3.3 最大後驗估計和正則化
3.4 貝葉斯線性估計
3.5 使用scikit-learn
第4章 分類算法中的貝葉斯
4.1 廣義線性模型下的sigmoid函數和softmax函數
4.2 對數損失和交叉熵
4.3 邏輯回歸的多項式拓展和正則化
4.4 樸素貝葉斯分類器
4.5 拉普拉斯平滑和連續特徵取值的處理方法
4.6 使用scikit-learn
第5章 非參數模型
5.1 K近鄰與距離度量
5.2 K近鄰與kd樹
5.3 決策樹和條件嫡
5.4 決策樹的剪枝
5.5 連續特徵取值的處理方法和基尼指數
5.6 回歸樹
5.7 使用scikit-learn
第6章 核方法
6.1 核方法的本質
6.2 對偶表示和拉格朗日乘子法
6.3 常見算法的核化拓展
6.4 高斯過程
6.5 使用scikit-learn
第7章 混合高斯:比高斯分佈更強大
7.1 聚類的重要問題
7.2 潛變量與K均值
7.3 混合高斯和極大似然估計的失效
7.4 EM算法的核心步驟
7.5 使用scikit-learn
第8章 模型組合策略
8.1 Bagging和隨機森林
8.2 Boosting的基本框架
8.3 Adaboost
8.4 GBDT和XGBoost
8.5 使用scikit-learn
第9章 核化降維和學習流形
9.1 線性降維
9.2 核化線性降維
9.3 流形學習
9.4 使用scikit-learn
第10章 處理時間序列
10.1 概率圖模型和隱變量
10.2 高階馬爾可夫模型
10.3 隱馬爾可夫模型
10.4 隱馬爾可夫模型的EM算法
10.5 使用scikit-learn
參考文獻



