推薦系統 — 飛槳深度學習實戰
深度學習技術及應用國家工程研究中心 百度技術培訓中心 組編 薛峰 吳樂 吳誌華 張文慧 楊晴虹 編著
買這商品的人也買了...
-
$474深入理解 TensorFlow 架構設計與實現原理 -
推薦系統實踐$419$398 -
PyTorch 深度學習與自然語言中文處理$420$328 -
自動化測試 + 網路爬蟲:至尊王者 Selenium 3$650$514 -
NumPy 高速運算徹底解說 - 六行寫一隻程式?你真懂深度學習?手工算給你看!$750$638 -
Introduction to Machine Learning, 4/e (Hardcover)$1,690$1,656 -
$551深度學習推薦系統 -
$454從零開始構建企業級推薦系統 -
機器學習設計模式 (Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops)$680$537 -
$658構建企業級推薦系統:算法、工程實現與案例分析 -
大規模推薦系統實戰$599$569 -
$3,021Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e (Paperback) -
$374動手學推薦系統 — 基於 PyTorch 的算法實現 (微課視頻版) -
不靠框架硬功夫 - Scikit-learn 手刻機器學習每行程式碼$780$390 -
$454業務驅動的推薦系統 -
一本精通 - OpenCV 與 AI 影像辨識$680$537 -
$301Botnet 檢測原理、方法與實踐 -
AI 世代必備!Python × ChatGPT 高效率工作術:從網路爬蟲到辦公室自動化超實務$680$530 -
約耳趣談軟體 (Joel on Software)$580$435 -
$551這就是推薦系統 — 核心技術原理與企業應用 -
$551圖表徵學習:邁向動態開放環境 -
一本精通 - Python 範例應用大全:Python 詳細語法教學 & 100+ 個 Python 範例$880$695 -
Python 大數據專案 X 工程 X 產品 資料工程師的升級攻略, 2/e$780$616 -
親手開發推薦系統 - PyTorch 全方位實作最重要演算法$780$616 -
設計機器學習系統|迭代開發生產環境就緒的 ML 程式 (Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications)$780$616
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
75折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$375 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書將推薦系統的理論基礎與代碼實踐相結合,內容涵蓋各類非個性化和個性化、經典及先進的推薦算法,以及工業界推薦系統的基本流程、步驟。本書可以作為各高校相關專業智能推薦系統課程教材,也可以作為技術人員的參考書籍。通過本書,讀者可以掌握推薦系統的基本概念、評價指標,熟悉推薦系統在工業界應用的具體過程,既可以瞭解基於傳統機器學習的推薦算法,也可以學習基於深度學習的前沿推薦算法,本書的最後一章帶領讀者熟悉推薦系統領域的關鍵問題和挑戰。
目錄大綱
目錄
第1章推薦系統概述
1.1推薦系統的背景與價值
1.1.1推薦系統的背景
1.1.2典型的推薦系統應用
1.2推薦系統是如何工作的
1.2.1推薦系統的基本任務
1.2.2推薦系統的工作過程
1.2.3推薦系統的原理
1.3推薦系統的歷史與分類
1.3.1推薦系統的發展歷史
1.3.2推薦算法的分類
1.4推薦系統評測
1.4.1推薦系統的評測方法
1.4.2推薦系統的評測指標
參考文獻
第2章生產環境下的推薦系統
2.1推薦系統的業務流程
2.1.1推薦總體流程
2.1.2召回環節
2.1.3排序環節
2.1.4後處理調整
2.2推薦系統的主要業務模塊
2.2.1數據採集與處理模塊
2.2.2特徵工程模塊
2.2.3推薦算法模塊
2.2.4用戶交互模塊
2.3推薦系統架構設計
2.3.1總體業務架構
2.3.2數據層
2.3.3算法層
2.3.4系統層
2.4線上系統的A/B測試
2.4.1前端接口
2.4.2數據讀取接口
2.4.3測試及評估接口
2.4.4監控接口
參考文獻
第3章機器學習算法基礎
3.1機器學習算法概述
3.1.1機器學習算法基本過程
3.1.2機器學習算法的分類
3.2線性回歸算法
3.2.1線性回歸模型
3.2.2線性回歸模型的損失函數
3.2.3梯度下降求解線性回歸模型參數的最優值
3.2.4線性回歸算法正則化
3.2.5實驗
3.2.6線性回歸算法特點
3.3邏輯回歸算法
3.3.1邏輯回歸模型
3.3.2邏輯回歸損失函數
3.3.3梯度下降求解最優值
3.3.4邏輯回歸算法的正則化
3.3.5實驗
3.3.6邏輯回歸算法特點
3.4決策樹
3.4.1決策樹的結構
3.4.2決策樹算法
3.4.3決策樹算法總結
3.4.4基於sklearn的決策樹實驗
3.5樸素貝葉斯
3.5.1樸素貝葉斯相關的統計學知識
3.5.2樸素貝葉斯模型
3.5.3總結
3.5.4基於sklearn的NaiveBayes實驗
3.6神經網絡
3.6.1神經元模型
3.6.2全連接神經網絡
3.6.3捲積神經網絡
3.6.4循環神經網絡
3.6.5圖神經網絡
3.6.6實驗評估
參考文獻
第4章典型推薦算法
4.1推薦算法相關知識
4.1.1推薦算法的分類
4.1.2推薦系統中的隱式反饋、顯式反饋
4.1.3推薦系統中的損失函數
4.2非個性化推薦算法
4.2.1基於流行度的推薦方法
4.2.2基於關聯規則的推薦方法
4.3基於內容的推薦
4.3.1基本思想和過程
4.3.2一個基於內容推薦的示例
4.3.3基於標簽的推薦
4.4基於統計(相似度)的方法
4.4.1基於用戶的協同過濾
4.4.2基於物品的協同過濾
4.5基於矩陣分解的個性化推薦
4.5.1Matrix Factorization算法(MF/SVD)
4.5.2BiasSVD算法
4.5.3SVD++算法
4.5.4WRMF和EALS算法
4.6基於物品的協同過濾
4.6.1背景簡介
4.6.2SLIM算法
4.6.3FISM算法
參考文獻
第5章點擊率預估算法
5.1推薦系統中的召回和排序過程
5.1.1為什麼需要召回和排序環節
5.1.2召回、排序環節的典型方法
5.2點擊率預測簡介
5.3邏輯回歸模型
5.3.1背景
5.3.2基於LR模型的CTR預測流程
5.3.3實驗
5.4因式分解機模型
5.4.1背景
5.4.2FM模型原理
5.4.3實驗
5.5梯度提升樹模型
5.5.1背景
5.5.2模型原理
5.5.3實驗
5.6梯度提升樹+邏輯回歸模型(GBDT+LR)
5.6.1背景
5.6.2模型原理
5.6.3實驗
5.7基於深度學習的CTR模型
5.7.1模型的記憶能力和泛化能力
5.7.2Wide&Deep模型
5.7.3DeepFM模型
5.7.4xDeepFM模型
5.7.5實驗
5.8本章小結
參考文獻
第6章基於深度學習的推薦算法
6.1為什麼需要深度學習
6.1.1推薦算法應用的挑戰
6.1.2深度學習的優勢
6.2深度學習與推薦系統的分類
6.2.1表徵學習
6.2.2交互建模
6.3基於深度學習的矩陣分解推薦算法DeepMF
6.3.1背景
6.3.2模型原理
6.3.3實驗
6.3.4模型總結
6.4基於深度學習的協同過濾推薦算法NeuralCF
6.4.1背景
6.4.2模型原理
6.4.3實驗
6.4.4模型總結
6.5基於深度學習的物品協同過濾算法DICF
6.5.1DICF模型結構
6.5.2DICF模型優化
6.5.3實驗評估
6.5.4DICF模型總結
6.6基於GNN的協同過濾算法
6.6.1背景
6.6.2模型原理
6.6.3實驗
6.6.4模型改進
6.6.5模型總結
6.7基於GNN的混合推薦算法
6.7.1DiffNet模型
6.7.2AGCN模型
6.8本章小結
參考文獻
第7章一個簡易的推薦系統
7.1簡易推薦系統需求描述
7.1.1數據集準備
7.1.2推薦模型準備
7.1.3構建在線推薦接口
7.2數據集處理
7.2.1用戶數據處理
7.2.2物品(電影)數據處理
7.2.3評分數據處理
7.2.4構建數據讀取器
7.3基於PaddlePaddle實現的神經網絡推薦模型
7.3.1用戶特徵向量構造
7.3.2電影特徵向量構造
7.3.3模型訓練和參數保存
7.4模擬在線電影推薦
第8章推薦系統中的問題與挑戰
8.1冷啟動問題
8.1.1冷啟動問題定義
8.1.2冷啟動解決方法
8.2數據稀疏性問題
8.2.1數據稀疏問題定義
8.2.2數據稀疏問題解決方法
8.3推薦可解釋性問題
8.3.1可解釋問題定義
8.3.2推薦解釋方法
8.4大數據處理與增量計算問題
8.4.1大數據問題定義
8.4.2大數據問題解決方法
8.5數據偏差問題
8.5.1數據偏差問題定義
8.5.2緩解數據偏差的方法
8.6其他問題
8.6.1時效性問題
8.6.2多樣性問題
8.6.3用戶意圖檢測問題
參考文獻



