Advanced Quantum Photonics Memory (現代光量子存儲)
徐端頤
- 出版商: 清華大學
- 出版日期: 2024-10-01
- 定價: $1,740
- 售價: 8.5 折 $1,479
- 語言: 簡體中文
- 頁數: 848
- ISBN: 7302673926
- ISBN-13: 9787302673927
-
相關分類:
光電子學 Photonics
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
Silicon Photonics: Fueling the Next Information Revolution(paperback)$2,350$2,303 -
Python 程式設計與人工智慧入門 -- 使用 DJI Tello 和 Microsoft Azure$400$360 -
$352Python 人臉識別:從入門到工程實踐 -
實戰 AI資料導向式學習|Raspberry Pi x 深度學習 x 視覺辨識$380$300 -
Google Coral Dev Board 開發板 | Edge TPU 人工智慧單板電腦$7,200$6,840 -
Google Coral Camera Module 相機模組$1,320$1,254 -
Google Coral USB Accelerator | Edge TPU 人工智慧加速器$4,200$3,990 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
科班出身的 AI人必修課:OpenCV 影像處理 使用 Python$780$616 -
$556電腦視覺與深度學習實戰:以 MATLAB、Python 為工具 -
Python 最強入門邁向數據科學之路 — 王者歸來 (全彩印刷第二版)$1,000$790 -
tf.keras 技術者們必讀!深度學習攻略手冊$1,000$850 -
$534深度實踐 OCR:基於深度學習的文字識別 -
決心打底!Python 深度學習基礎養成$690$587 -
深度學習 -- 從入門到實戰 (使用 MATLAB)(附範例光碟)$460$414 -
$607深度學習之人臉圖像處理:核心算法與案例實戰 -
Quantum Finance: Intelligent Forecast and Trading Systems$2,600$2,470 -
Make: Electronics 圖解電子實驗專題製作, 3/e (Make: Electronics: Learning by Discovery: A Hands-On Primer for the New Electronics Enthusiast, 3/e)$780$616
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
79折
$564CUDA 並行編程與性能優化 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
87折
$981深度學習:基礎與概念 -
79折
$469GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
79折
$469GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797 -
VIP 95折
ZBrush遊戲角色設計(第2版)$479$455
相關主題
商品描述
"It has proven track records of innovative product development from concept to high volume production with specialization in state-of-the-art coherent silicon photonics integrated circuit (Si-PIC) chip optical engine from design, fabrication, processes, integration to verification, digital and analog high speed (>100Gbps) long reach coherent optical transceivers, DSP, SFP+/XFP/QSFP28/QSFP-DD optical transceivers, DFB/FP/VCSEL lasers, APD/PD receivers, passive optical devices including thin film filter, fiber Bragg grating (FBG), DWDM and OADM devices, EDFA, MEMS, LCoS, ROADM, WSS, MCS, precision photonics IC chip engineering, hardware and firmware designs, optical line cards, and DWDM optical system engineering. "
目錄大綱
Contents
Chapter 1The latest development in photonic memory
1.1New developments in photonics
1.2Other big data storage technology
1.3Photonic quantum for memory
1.4Controllabledipole quantum memory
1.5MaxwellBloch equations
1.6Ramantype optical quantum memory
1.7Precision of spinechobased quantum memories
1.8Integrated photonics for memory
1.9Photonic integration solid state memory
1.10Other new quantum memory technologies
1.10.1Ultraviolet photonic storage
1.10.2Plasmonic optical storage
1.10.3Xray storage
1.10.4Nanoprobe and molecular polymer storage
1.10.5Electronic quantum holography
1.10.6Compositive application of the different principles
Chapter 2Fundamentals of quantum information
2.1Introduction
2.1.1Quantum computing (QC) roadmap
2.1.2New quantum computation roadmap
2.2Basic concepts
2.2.1Quatum information
2.2.2Targets of quantum information research
2.2.3Experiments
2.2.4Primary concepts
2.2.5Separability criteria and positive maps
2.3Basic concepts
2.3.1Maximally entangled states
2.3.2Channels
2.3.3Observables and preparations
2.3.4Quantum mechanics in phase space
2.4Microaperture laser for photonic memory
2.4.1Teleportation and dense coding
2.4.2Entanglement enhanced teleportation
2.4.3Dense coding
2.4.4Estimating and copying
2.4.5Distillation of entanglement
2.4.6Quantum error correction
2.4.7Quantum computing
2.4.8Quantum cryptography
2.5Entanglement measures
2.5.1General properties and definitions
2.5.2Two qubits
2.5.3Entanglement measures under symmetry
2.6Channel capacity
2.6.1The general case
2.6.2The classical capacity
2.6.3The quantum capacity
2.7Multiple inputs
2.8Quantum probability
2.8.1Review of quantum probability
2.8.2Why classical probability does not suffice
2.8.3Towards a mathematical model
2.8.4Quantum probability
2.8.5Operations on probability spaces
2.8.6Examples of quantum operations
2.8.7Quantum impossibilities
2.8.8Quantum novelties
2.9Dense quantum coding and quantum finite automata
2.9.1Holevos theorem and the entropy coalescence lemma
2.9.2The asymptotic of random access codes
2.9.3Oneway quantum finite automata
2.9.4Quantum advantage for dense coding
2.10Quantum data compression
2.10.1Quantum data compression: an example
2.10.2Schumacher encoding in general
2.10.3Mixedstate coding: Holevo information
2.10.4Accessible information
2.11Photonic technologies for quantum information
2.11.1Singlephoton sources
2.11.2Entangledphoton sources
2.11.3Singlephoton detectors
2.11.4Mathematical background
Chapter 3Multidimension Photonic Memory
3.1Mechanism of photochromic multidimension memory
3.1.1Photochromic reaction
3.1.2Multiwavelength photochromic storage process
3.1.3Model of data writing
3.2Experiments for multiwavelength and multilevel storage
3.2.1The influence of initial reflectivity to writing speed
3.2.2The influence of the maximum reflectivity to writing process
3.2.3Written time constant k
3.2.4Reflectivity of the reflective layer
3.2.5Time constants k
3.3Crosstalk in multiwavelength and multilevel storage
3.3.1Emerging of crosstalk
3.3.2The calculations of crosstalk
3.4Nondestructive readout
3.5Multiwavelength and multilevel storage system
3.5.1System architecture
3.5.2Optical channel characteristics and crosstalk analysis
3.6Modulation coding and error correction
3.6.1Modulation coding
3.6.2The error correction coding
3.6.3Multiwavelength and multilevel storage error code correction
3.6.4ReedSolomon errorcorrecting code
3.7Application of multiwavelength and multilevel storage
3.7.1Multilevel bluray disc drive
3.7.2Threewavelength eightlevel optical storage
3.7.3Multilevel photochromic medium
3.7.4Multilevel amplitude modulation
3.7.5Rate 7/8 runlength and level modulation for multilevel ROM
3.7.67/8 runlength and level modulation code
3.7.7Level modulation process
3.7.8Multilevel amplitudemodulation
3.7.9Systems integration
3.7.10Multilevel runlengthlimited (MLRLL) modulation
3.7.11Three wavelength and multilevel storage with mask
Chapter 4Photonic superresolution memory
4.1Overview
4.1.1Nearfield interaction and microscopy
4.1.2Nearfield optics
4.1.3Theoretical modeling of nearfield nanoscopic interactions
4.1.4Theoretical modeling of nearfield nanoscopic interactions
4.2Principles of nearfield optics
4.2.1Base theoretical works
4.2.2Perturbative or selfconsistent approach
4.2.3Theories based on matching boundary conditions
4.2.4Expansion in plane waves: grating and diffraction theory
4.2.5Perturbative diffraction theory
4.2.6Scattering theory
4.2.7Nearfield distributions
4.2.8Interaction and coupling to the farfield
4.3Optical solid immersion lens (OSIL)
4.3.1Parameters of nearfield optical disc systems
4.3.2Solid immersion lens designs
4.3.3Lens design with NA=1.9 for first surface recording
4.3.4Air gap dependence of the spot size for practical optical discs
4.4Superresolution nearfield structure (SRENS)
4.4.1Numerical model for super resolution effect
4.4.2Numerical approach
4.4.3Correct Fourier transform
4.4.4Simulation of the readout signal
4.4.5SRENS with ferroelectrics of chalcogenides
4.5Microaperture laser for NFO data storage
4.5.1Model and numerical methods
4.5.2Numericalresults
4.6Plasmonic nearfield recording (PNFR)
4.6.1Holographic lithography (HL) application
4.6.2Plasmonic nanostructures
4.6.3Plasmonic storage medium
4.6.4Nanogap control with optical antennas (Metallic nanoantennas)
4.6.5Plasmonic nanostructures for optical storage
4.6.6The results of FDTD simulations
4.7Metamaterial immersion lenses (MIL)
4.7.1Theory of MIL
4.7.2Simulations and analysis
4.7.3Application in the future
4.8Dynamic pressure air bearing nanogap control
4.8.1Nanogap flight system design theory model
4.8.2Lubrication model on surface interface of optical head/disc
4.8.3Solving discrete modified Reynolds equations
4.8.4Stream function on the underside of microflying head
4.8.5Dynamic characteristics of micron flight systems
4.8.6Nearfield optical dynamic flight experiment system
4.9Micro positive pressure nanogap flying head design
4.9.1Positive pressure microflying head design
4.9.2The negative pressure microflying head design
4.9.3Reform design of the slider from magnetic storage
4.9.4Comparative analysis of the microflying head design
4.9.5Adaptive suspension design
4.10Nanogap flight experimental and testing
4.10.1Main special testing equipment
4.10.2The nearfield spacing testing
4.10.3Flight system resonance characteristics testing
4.10.4Flying start/stop characteristics testing
Chapter 5Nanophotonic memory
5.1Nanophotonics and quantum memories
5.1.1Nanophotonics
5.1.2Nanolithography
5.1.3Optical nanoscopy for data storage
5.1.4Rewritable data storage
5.1.5Paint it black
5.1.6Slow light and memory
5.1.7Photonecho quantum memory
5.2Analysis of a quantum memory for photons
5.2.1Principles
5.2.2General solution
5.3Atomic distribution and memory efficiency
5.3.1Memory efficiency versus storage duration
5.3.2Analysis of results
5.3.3Control and releasing of photon
5.3.4Energy control
5.3.5Methods
5.4Photonic quantum controlle memory function
5.4.1Electron spins in quantum
5.4.2Enhancement of excitonic spontaneous emission
5.4.3Planar microcavities
5.4.4Clock signals
5.4.5Quantum memory and decoherence time
5.4.6T1 and T2 for electron spins
5.4.7T1 and T2 for nuclear spins
5.5Singlephoton emission and distribution of entangled quantum states
5.5.1Singlephoton interferometer with quantum phase modulators
5.5.2Generation of singlephoton pulses
5.6Singlephoton wavepackets and memory in atomic vapor
5.6.1Electronics and photonics integration
5.6.2Wavelength switched optical networks
5.6.3Silicon optical phased array
5.6.4Singlephoton wavepackets to atomic memory
5.6.5Solid state lightmatter interface at photon
5.6.6Photon memory in atomic vapor
5.7Photon storage in atomic media
5.7.1Solidstate memory at the single photon level
5.7.2A singlephoton transistor using nanoscale surface plasmons
5.7.3Photon correlations
5.7.4Multiphoton dynamics
5.8Optical dense atomic memory medium
5.8.1Λtype optical dense atomic media
5.8.2Optimal retrieval
5.8.3Adiabatic retrieval and storage
5.8.4Shaping retrieval into an arbitrary mode
5.9Effects of metastable state nondegeneracy
5.9.1Optimal control using gradient ascent
5.9.2Free space model
5.9.3Adjoint equations of motion in the cavity model
5.10Control field optimization for adiabatic storage
5.11Analysis of photon number in quantum memory
5.11.1Quantum memory for light
5.11.2Methods
5.12Quantum solid memory
5.12.1Atomic memory
5.12.2Stable solidstate source of single photons
5.12.3Stopped times of light storage
5.13Photon solidstate quantum memories
5.13.1Memory operation and properties
5.13.2Analytical model of secondorder interference in coincidence
measurements
5.13.3Simplied model for HOM visibility
5.13.4Forbidden regions
5.13.5Cooperative effects for photons and electrons
5.13.6Nanoscale optical interactions
5.13.7Lateral nanoscopic localization
5.13.8Quantum confinement effects
5.13.9New cooperative transitions
5.13.10Nanoscale electronic energy transfer
5.13.11Quantum dots
References



