Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-By-Step Guide for Applications (Hardcover)
暫譯: 非線性最小二乘法於反問題的應用:理論基礎與逐步指南 (精裝版)

Chavent, Guy

  • 出版商: Springer
  • 出版日期: 2009-10-19
  • 售價: $1,200
  • 貴賓價: 9.5$1,140
  • 語言: 英文
  • 頁數: 360
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 904812784X
  • ISBN-13: 9789048127849
  • 下單後立即進貨 (約5~7天)

商品描述

The domain of inverse problems has experienced a rapid expansion, driven by the increase in computing power and the progress in numerical modeling. When I started working on this domain years ago, I became somehow fr- tratedtoseethatmyfriendsworkingonmodelingwhereproducingexistence, uniqueness, and stability results for the solution of their equations, but that I was most of the time limited, because of the nonlinearity of the problem, to provethatmyleastsquaresobjectivefunctionwasdi?erentiable....Butwith my experience growing, I became convinced that, after the inverse problem has been properly trimmed, the ?nal least squares problem, the one solved on the computer, should be Quadratically (Q)-wellposed, thatis, both we- posed and optimizable: optimizability ensures that a global minimizer of the least squares function can actually be found using e?cient local optimization algorithms, and wellposedness that this minimizer is stable with respect to perturbation of the data. But the vast majority of inverse problems are nonlinear, and the clas- cal mathematical tools available for their analysis fail to bring answers to these crucial questions: for example, compactness will ensure existence, but provides no uniqueness results, and brings no information on the presence or absenceofparasiticlocalminimaorstationarypoints....

商品描述(中文翻譯)

反問題的領域經歷了快速擴展,這是由於計算能力的提升和數值建模的進步。當我幾年前開始從事這個領域的工作時,我感到有些沮喪,因為我的朋友們在建模方面產生了他們方程解的存在性、唯一性和穩定性結果,而我大多數時間因為問題的非線性而受到限制,只能證明我的最小二乘目標函數是可微的……但隨著我的經驗增長,我開始相信,在反問題被適當修整之後,最終的最小二乘問題,即在計算機上解決的問題,應該是二次(Q)良定義的,也就是說,既是良定義的又是可優化的:可優化性確保可以使用高效的局部優化算法實際找到最小二乘函數的全局最小值,而良定義性則確保這個最小值對數據的擾動是穩定的。但絕大多數反問題都是非線性的,而可用於其分析的經典數學工具無法對這些關鍵問題提供答案:例如,緊緻性將確保存在性,但不提供唯一性結果,並且對於寄生局部最小值或駐點的存在或不存在沒有任何信息……

作者簡介

Background: Ecole Polytechnique (Paris, 1965),

Ecole Nationale Supérieure des Télécommunications (Paris,1968),

Paris-6 University (Ph. D., 1971).

Professor Chavent joined the Faculty of Paris 9-Dauphine in 1971. He is now an emeritus professor from this university. During the same span of time, he ran a research project at INRIA (Institut National de Recherche en Informatique et en Automatique), focused on industrial inverse problems (oil production and exploration, nuclear reactors, ground water management...).

作者簡介(中文翻譯)

背景:巴黎高等工藝學院(Ecole Polytechnique,1965年),

巴黎國立電信學院(Ecole Nationale Supérieure des Télécommunications,1968年),

巴黎第六大學(Ph. D.,1971年)。

查文教授(Professor Chavent)於1971年加入巴黎第九大學(Paris 9-Dauphine)任教,現為該校名譽教授。在此期間,他在法國國家計算機與自動化研究所(INRIA,Institut National de Recherche en Informatique et en Automatique)主持了一個研究專案,專注於工業反問題(如石油生產與勘探、核反應堆、地下水管理等)。