Evolutionary Approach to Machine Learning and Deep Neural Networks: Neuro-Evolution and Gene Regulatory Networks
暫譯: 機器學習與深度神經網絡的演化方法:神經演化與基因調控網絡
Hitoshi Iba
- 出版商: Springer
- 出版日期: 2018-06-26
- 售價: $6,740
- 貴賓價: 9.5 折 $6,403
- 語言: 英文
- 頁數: 245
- 裝訂: Hardcover
- ISBN: 9811301999
- ISBN-13: 9789811301995
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.
The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.
商品描述(中文翻譯)
本書提供有關基於進化演算法的搜尋策略的方法論的理論與實務知識,並整合了多種機器學習和深度學習技術。這些技術包括卷積神經網絡(convolutional neural networks)、Gröbner 基底、相關向量機(relevance vector machines)、遷移學習(transfer learning)、集成方法(bagging and boosting methods)、聚類技術(affinity propagation)以及信念網絡(belief networks)等。這些工具的發展有助於更好地優化方法論。本書從進化演算法的基本概念開始,涵蓋跨學科的研究主題,對於不同層次的讀者來說都具有價值:初學者、中級者以及來自相關領域的專家讀者。
在介紹和基本方法的章節之後,第三章詳細介紹了一個新的研究方向,即神經進化(neuro-evolution),這是一種生成深度神經網絡的進化方法,並描述了如何將進化方法與機器學習技術結合進行擴展。第四章包括新穎的方法,如基於親和傳播的粒子群優化(PSOAP)和用於差分進化的遷移學習(TRADE),這是另一種擴展差分進化的機器學習方法。
最後一章專注於基因調控網絡(gene regulatory network, GRN)研究的最新進展,這是最有趣且活躍的研究領域之一。作者描述了一個演化反應網絡,該網絡擴展了神經進化方法論,以生成適合生化系統的基因網絡,並成功設計了合成生物學中的基因電路。作者還展示了GRN在多個人工智能任務中的實際應用,提出了一個由GRN進行運動生成的框架(MONGERN),該框架使GRN能夠操作一個真實的人形機器人。