Course in Analysis, a - Vol. IV: Fourier Analysis, Ordinary Differential Equations, Calculus of Variations
暫譯: 分析課程 - 第四卷:傅立葉分析、常微分方程、變分法

Jacob, Niels, Evans, Kristian P.

  • 出版商: World Scientific Pub
  • 出版日期: 2018-09-05
  • 售價: $3,160
  • 貴賓價: 9.5$3,002
  • 語言: 英文
  • 頁數: 768
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9813274522
  • ISBN-13: 9789813274525
  • 相關分類: 微積分 Calculus
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In the part on Fourier analysis, we discuss pointwise convergence results, summability methods and, of course, convergence in the quadratic mean of Fourier series. More advanced topics include a first discussion of Hardy spaces. We also spend some time handling general orthogonal series expansions, in particular, related to orthogonal polynomials. Then we switch to the Fourier integral, i.e. the Fourier transform in Schwartz space, as well as in some Lebesgue spaces or of measures.Our treatment of ordinary differential equations starts with a discussion of some classical methods to obtain explicit integrals, followed by the existence theorems of Picard-Lindelöf and Peano which are proved by fixed point arguments. Linear systems are treated in great detail and we start a first discussion on boundary value problems. In particular, we look at Sturm-Liouville problems and orthogonal expansions. We also handle the hypergeometric differential equations (using complex methods) and their relations to special functions in mathematical physics. Some qualitative aspects are treated too, e.g. stability results (Ljapunov functions), phase diagrams, or flows.Our introduction to the calculus of variations includes a discussion of the Euler-Lagrange equations, the Legendre theory of necessary and sufficient conditions, and aspects of the Hamilton-Jacobi theory. Related first order partial differential equations are treated in more detail.The text serves as a companion to lecture courses, and it is also suitable for self-study. The text is complemented by ca. 260 problems with detailed solutions.

商品描述(中文翻譯)

在傅立葉分析的部分,我們討論逐點收斂結果、可加性方法,以及當然還有傅立葉級數的平方平均收斂。更進階的主題包括對哈迪空間的初步討論。我們也花了一些時間處理一般的正交級數展開,特別是與正交多項式相關的部分。接著,我們轉向傅立葉積分,即在施瓦茨空間中的傅立葉變換,以及在某些勒貝格空間或測度下的傅立葉變換。我們對常微分方程的處理始於一些經典方法的討論,以獲得顯式積分,接著是由不動點論證證明的皮卡-林德洛夫和佩阿諾的存在定理。線性系統的處理非常詳細,我們開始對邊值問題進行初步討論。特別是,我們研究斯圖姆-柳維爾問題和正交展開。我們還處理超幾何微分方程(使用複數方法)及其與數學物理中特殊函數的關係。一些定性的方面也有涉及,例如穩定性結果(李雅普諾夫函數)、相圖或流。我們對變分法的介紹包括對歐拉-拉格朗日方程的討論、萊讓德必要和充分條件理論,以及哈密頓-雅可比理論的各個方面。相關的一階偏微分方程將更詳細地處理。這本書作為講座課程的輔助材料,也適合自學。書中附有約260道問題及其詳細解答。

最後瀏覽商品 (20)