Fixed Points of Semigroups of Pointwise Lipschitzian Operators: A Nonexpansive and Asymptotic Approach
暫譯: 點狀利普希茲運算子的半群不動點:非擴張與漸近方法
Kozlowski, Wojciech M.
- 出版商: Springer
- 出版日期: 2026-01-30
- 售價: $2,430
- 貴賓價: 9.8 折 $2,381
- 語言: 英文
- 頁數: 141
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3032088682
- ISBN-13: 9783032088680
-
相關分類:
離散數學 Discrete-mathematics
海外代購書籍(需單獨結帳)
商品描述
This book provides an overview of recent advances in fixed-point theory for pointwise Lipschitzian semigroups of nonlinear operators, with emphasis on the asymptotic approach. It consolidates otherwise fragmented, inconsistent, and incomplete, publications surrounding the foundations of the theory of common fixed points for semigroups of nonlinear, pointwise Lipschitzian mappings acting in Banach spaces, with some pointers to the parallel results in other settings, including metric and modular spaces. The main focus of the proposed book will be on the following aspects: (1) existence results, (2) construction algorithms convergence in the strong and the weak topology, (3) stability of such algorithms, (4) applications to differential equations, dynamical systems and stochastic processes.
The main feature of this work can be described as the introduction of the common, very general and yet relatively elementary (using basic notions of the Banach space geometry) framework, which will allow the reader to comprehend the whole story, including the inner interdependencies, behind the theory of such common fixed points. As the sub-title suggests, we will use the lenses of asymptotic and pointwise asymptotic variants of nonexpansiveness. This approach, when used in a consistent way, assures generality of the results, illustrate in relatively simple terms the current stage of the research, while allowing the readers to start or continue work on further extensions and generalizations. The value of and the need for the use of the asymptotic approach will be explained from the theoretical point of view and illustrated by examples.
While the main benefit the readers should expect form this work is to get a guidebook for the fixed point theory for the asymptotic pointwise Lipschitzian semigroups, the book can be also used as a brief compendium of the common fixed point results for more classical semigroups of nonexpansive mappings, being a special case in our much more general settings. Also, and importantly, the results discussed in this work are generally proved for semigroups parametrized by any additive sub-semigroups of the set of all nonnegative real numbers, and hence can be also applied to discrete cases, including the fixed point results for asymptotic pointwise nonexpansive mapping, generalizing in this way classical results of Goebel, Kirk, Xu, and others.
商品描述(中文翻譯)
本書提供了有關非線性運算子的逐點Lipschitz半群的固定點理論最近進展的概述,重點在於漸近方法。它整合了圍繞非線性逐點Lipschitz映射在Banach空間中作用的半群的共同固定點理論基礎的零散、不一致和不完整的出版物,並指向其他環境中的平行結果,包括度量空間和模塊空間。本書的主要焦點將集中在以下幾個方面:(1) 存在性結果,(2) 在強拓撲和弱拓撲下的構造算法收斂,(3) 此類算法的穩定性,(4) 對微分方程、動態系統和隨機過程的應用。
本工作的主要特點可以描述為引入一個共同的、非常一般且相對基本的框架(使用Banach空間幾何的基本概念),這將使讀者能夠理解整個故事,包括這些共同固定點理論背後的內部相互依賴性。正如副標題所示,我們將使用漸近和逐點漸近的非擴展性變體的視角。這種方法在一致使用時,保證了結果的普遍性,以相對簡單的術語說明當前研究的階段,同時允許讀者開始或繼續進行進一步的擴展和概括。漸近方法的價值和必要性將從理論的角度進行解釋並通過示例進行說明。
雖然讀者應該期望從這項工作中獲得的主要好處是獲得漸近逐點Lipschitz半群的固定點理論指南,但本書也可以作為更經典的非擴展映射半群的共同固定點結果的簡要彙編,這是我們更一般設定中的一個特例。此外,重要的是,本工作中討論的結果通常是針對由所有非負實數集合的任何加法子半群參數化的半群證明的,因此也可以應用於離散情況,包括漸近逐點非擴展映射的固定點結果,從而概括了Goebel、Kirk、Xu等人的經典結果。
作者簡介
Wojciech M. (Walter) Kozlowski has been actively involved in research activities in mathematics and applications since the 1980s with a particular interest in functional analysis, fixed point theory and applications. A Fulbright scholar, an author of a monographic book "Modular Function Spaces" (Marcel Dekker 1988), a co-author of a monograph "Fixed Point Theory in Modular Spaces" (Springer 2015), and author of numerous scientific papers, he has held several academic posts at the universities around the world, currently as an Adjunct Associate Professor at the School of Mathematics and Statistics, University of New South Wales in Sydney. In parallel, he has been pursuing ICT professional career within leading global organizations. He has been active in the international professional organisations, including positions of a member of Linux Foundation Networking Governing Board, member of TheOpenGroup Certification Board, and Chair of the GSMA Open Infrastructure Group.
作者簡介(中文翻譯)
Wojciech M. (Walter) Kozlowski 自1980年代以來積極參與數學及其應用的研究活動,特別對函數分析、固定點理論及其應用感興趣。他是富布賴特學者,著有專著《Modular Function Spaces》(Marcel Dekker 1988),並共同撰寫專著《Fixed Point Theory in Modular Spaces》(Springer 2015),以及發表了多篇科學論文。他曾在全球多所大學擔任多個學術職位,目前是新南威爾士大學數學與統計學院的兼任副教授。與此同時,他在全球領先的組織中追求資訊與通信技術(ICT)專業生涯。他在國際專業組織中活躍,包括擔任Linux Foundation Networking Governing Board成員、TheOpenGroup Certification Board成員,以及GSMA Open Infrastructure Group主席。