Monopole Maps and L² -Cohomology
暫譯: 單極地圖與L²-上同調
Kato, Tsuyoshi, Nakamura, Nobuhiro
- 出版商: Springer
- 出版日期: 2025-08-26
- 售價: $7,200
- 貴賓價: 9.5 折 $6,840
- 語言: 英文
- 頁數: 292
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9819684714
- ISBN-13: 9789819684717
-
相關分類:
離散數學 Discrete-mathematics
海外代購書籍(需單獨結帳)
相關主題
商品描述
The theme of this book is to establish a link between gauge theory and L -cohomology theory. Although both theories focus on differential topology, they have been developed rather independently. One of the main reasons lies in the differing characteristics of these theories. This book introduces an integrated theory that bridges these subjects. One goal of the book is to propose differential-topological conjectures that are covering versions of the so-called 10/8-theorem. We include various pieces of evidence to support them. This book is almost self-contained and is accessible not only to graduate students in differential geometry but also to both the experts in L -cohomology theory and gauge theory. This unique and fundamental book contains numerous unsolved problems, suggesting future directions of topology of smooth 4-manifolds by using various analytic methods.
After the introduction (Chap. 1), Chap. 2 gives a quick overview of the historical progress of differential topology. Chap. 3 covers the basic subjects of spin geometry. Chaps 4 and 5 deal with the foundations of the Seiberg-Witten and the Bauer-Furuta theories. In Chaps 6 and 7, we present the basic theory of L -cohomology, L -Betti numbers, amenability, and residual finiteness of discrete groups.
In Chap. 8, we treat the Singer conjecture and describe the solution to the conjecture for Kähler hyperbolic manifolds. We then describe various variations of Furuta's 10/8-inequalities and how the aspherical 10/8-inequalities conjecture is induced. We provide the evidence by examining various classes of 4-manifolds, such as aspherical surface bundles and complex surfaces.
商品描述(中文翻譯)
這本書的主題是建立量規理論(gauge theory)與 L-上同調理論(cohomology theory)之間的聯繫。雖然這兩種理論都專注於微分拓撲(differential topology),但它們的發展相對獨立。主要原因之一在於這些理論的特性不同。本書介紹了一種綜合理論,橋接這些主題。本書的一個目標是提出微分拓撲猜想,這些猜想是所謂的 10/8 定理的覆蓋版本。我們包含了各種證據來支持這些猜想。本書幾乎是自足的,不僅對微分幾何的研究生可及,對於 L-上同調理論和量規理論的專家也同樣適用。這本獨特且基礎的書籍包含了許多未解決的問題,並通過各種分析方法暗示了光滑 4-流形(smooth 4-manifolds)拓撲的未來方向。
在引言(第 1 章)之後,第 2 章快速概述了微分拓撲的歷史進展。第 3 章涵蓋了自旋幾何(spin geometry)的基本主題。第 4 章和第 5 章處理 Seiberg-Witten 理論和 Bauer-Furuta 理論的基礎。在第 6 章和第 7 章中,我們介紹了 L-上同調的基本理論、L-Betti 數、可容性(amenability)以及離散群的殘餘有限性(residual finiteness)。
在第 8 章中,我們討論了 Singer 猜想,並描述了對 Kähler 超曲面流形(hyperbolic manifolds)猜想的解決方案。接著,我們描述了 Furuta 的 10/8 不等式的各種變體,以及如何引出非球面 10/8 不等式的猜想。我們通過檢查各類 4-流形,例如非球面表面束(aspherical surface bundles)和複表面(complex surfaces),提供了證據。
作者簡介
Tsuyoshi Kato received his Ph.D. from Kyoto University in 1995. He is currently a Professor of Mathematics at Kyoto University.
Nobuhiro Nakamura received his Ph.D. from Kyoto University in 2006. He is currently a Professor of Mathematics at Fukushima Medical University.
作者簡介(中文翻譯)
加藤毅於1995年獲得京都大學的博士學位。目前他是京都大學的數學教授。
中村信宏於2006年獲得京都大學的博士學位。目前他是福島醫科大學的數學教授。