Advanced Randomized Neural Networks for Pattern Analysis
暫譯: 進階隨機神經網絡於模式分析的應用

Zhang, Chenglong, Ding, Shifei, Wang, Yang

  • 出版商: World Scientific Pub
  • 出版日期: 2025-10-05
  • 售價: $5,070
  • 貴賓價: 9.5$4,817
  • 語言: 英文
  • 頁數: 330
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9819814685
  • ISBN-13: 9789819814688
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

商品描述

This book is the culmination of our research in the recent decade on randomized neural networks with data-dependent supervision mechanisms. Traditional randomized neural networks mainly focused on constructing various deep neural networks with data independent random weights, ignoring the impact of the number of nodes and scope of parameters on the universal approximation property (UAP) of randomized neural networks. Comprising of 15 chapters, Advanced Randomized Neural Networks for Pattern Analysis introduces systematic solutions for advanced data-dependent stochastic configuration networks, namely algorithms that assign random parameters and construct network structures incrementally. The book is segmented into three major sections -- neural networks optimization, robust data analysis, and deep fusion learning -- that feature the successful performance of advanced randomized neural networks in various pattern analysis problems. We anticipate that both researchers and engineers in the field of artificial neural networks, particularly pattern recognition and medical diagnosis, will find this book and the associated algorithms useful, and we hope that anyone with an interest in the related research field will find the book enjoyable and informative.

商品描述(中文翻譯)

本書是我們在過去十年中對隨機神經網絡及其數據依賴監督機制研究的結晶。傳統的隨機神經網絡主要集中於構建各種具有數據獨立隨機權重的深度神經網絡,忽略了節點數量和參數範圍對隨機神經網絡的通用逼近性質(Universal Approximation Property, UAP)的影響。本書共包含15章,名為《進階隨機神經網絡於模式分析的應用》,介紹了針對進階數據依賴隨機配置網絡的系統解決方案,即分配隨機參數並逐步構建網絡結構的算法。本書分為三個主要部分——神經網絡優化、穩健數據分析和深度融合學習——展示了進階隨機神經網絡在各種模式分析問題中的成功表現。我們預期,人工神經網絡領域的研究人員和工程師,特別是在模式識別和醫療診斷方面,會發現本書及其相關算法非常有用,我們希望任何對相關研究領域感興趣的人都能覺得本書既有趣又具啟發性。