Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction (Second Edition)
暫譯: 歐幾里得與雙曲幾何中的重心微積分:比較導論(第二版)

Ungar, Abraham Albert

  • 出版商: World Scientific Pub
  • 出版日期: 2025-10-06
  • 售價: $5,410
  • 貴賓價: 9.5$5,140
  • 語言: 英文
  • 頁數: 400
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9819821290
  • ISBN-13: 9789819821297
  • 相關分類: 離散數學 Discrete-mathematics
  • 海外代購書籍(需單獨結帳)

商品描述

This unique and richly illustrated book explores barycentric calculus, a geometric method grounded in the concept of the center of gravity. Used to elegantly determine triangle centers through weighted points, barycentric coordinates have long revealed deep insights in Euclidean geometry. Now, this book extends those insights to the fascinating realm of hyperbolic geometry, building a powerful bridge between classical and modern mathematical worlds.In Euclidean geometry, over 3,000 triangle centers have been identified using barycentric coordinates. This book introduces readers to their hyperbolic analogs, uncovering remarkable parallels between triangle centers in Bolyai-Lobachevsky geometry and their Euclidean counterparts. The author's innovative use of Cartesian coordinates, trigonometry, and vector algebra -- adapted for hyperbolic geometry -- equips readers with familiar yet powerful tools to explore unfamiliar terrain.At the heart of the book is the development of hyperbolic barycentric coordinates, or gyrobarycentric coordinates, within the framework of gyrovector spaces -- a novel algebraic structure emerging from Einstein's velocity addition and Möbius addition. These gyrovectors underpin the Klein and Poincaré ball models of hyperbolic geometry, just as traditional vectors underlie analytic Euclidean geometry.Whether you are a researcher in geometry, mathematical physics, or relativity, or simply fascinated by the deep structure of space, this book offers a groundbreaking approach to analytic hyperbolic geometry through barycentric and gyrobarycentric coordinates.

商品描述(中文翻譯)

這本獨特且插圖豐富的書籍探討了重心微積分(barycentric calculus),這是一種基於重心概念的幾何方法。重心坐標(barycentric coordinates)用於優雅地通過加權點確定三角形的中心,長期以來在歐幾里得幾何中揭示了深刻的見解。現在,這本書將這些見解擴展到迷人的雙曲幾何(hyperbolic geometry)領域,建立了古典與現代數學世界之間的強大橋樑。

在歐幾里得幾何中,已經使用重心坐標識別了超過 3,000 個三角形中心。這本書向讀者介紹它們的雙曲類比,揭示了博爾雅伊-羅巴切夫斯基幾何(Bolyai-Lobachevsky geometry)中三角形中心與其歐幾里得對應物之間的顯著平行關係。作者創新的使用笛卡爾坐標(Cartesian coordinates)、三角學(trigonometry)和向量代數(vector algebra)——針對雙曲幾何進行調整——為讀者提供了熟悉但強大的工具,以探索不熟悉的領域。

本書的核心是雙曲重心坐標(hyperbolic barycentric coordinates)或旋轉重心坐標(gyrobarycentric coordinates)的發展,這是在旋轉向量空間(gyrovector spaces)框架內的一種新穎代數結構,該結構源自愛因斯坦的速度加法(velocity addition)和莫比烏斯加法(Möbius addition)。這些旋轉向量支撐著雙曲幾何的克萊因(Klein)和龐加萊(Poincaré)球模型,就像傳統向量支撐著解析歐幾里得幾何一樣。

無論您是幾何學、數學物理或相對論的研究人員,還是單純對空間的深層結構感到著迷,這本書都提供了一種通過重心和旋轉重心坐標來分析雙曲幾何的開創性方法。