Python 資料科學實戰教本 - 爬蟲、清理、資料庫、視覺化、探索式分析、機器學習建模,數據工程一次搞定!
陳會安
買這商品的人也買了...
-
Python 網路爬蟲與資料視覺化應用實務$650$553 -
機器學習的數學:用數學引領你走進 AI 的神秘世界$580$452 -
STP 行銷策略之 Python 商業應用實戰|網路爬蟲 x 機器學習 x 數據分析$520$411 -
$454Python 機器學習系統構建 (原書第3版) -
Python 與 LINE Bot 機器人全面實戰特訓班 -- Flask 最強應用 (附210分鐘影音教學/範例程式)$550$434 -
Python 網路爬蟲:大數據擷取、清洗、儲存與分析 -- 王者歸來, 2/e$750$593 -
資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$473 -
圖像處理與圖像分析基礎 (C/C++語言版)$354$336 -
銷售 AI 化!看資料科學家如何思考, 用 Python 打造能賺錢的機器學習模型$620$527 -
集成式學習:Python 實踐!整合全部技術,打造最強模型 (Hands-On Ensemble Learning with Python: Build highly optimized ensemble machine learning models using scikit-learn and Keras)$750$593 -
Android 移動安全攻防實戰 (微課視頻版)$414$393 -
比 VBA 更強的 RPA 來了!Power Automate Desktop 零程式打造辦公室流程自動化$560$442 -
圖解機器學習與資料科學的數學基礎|使用 Python$650$514 -
Python 操作 Excel - 最強入門邁向辦公室自動化之路 - 王者歸來$680$537 -
從機器學習到人工智慧|寫給 Android/iOS 程式師的 ML/AI 開發指南 (AI and Machine Learning for On-Device Development: A Programmer's Guide)$620$490 -
Python - 最強入門邁向數據科學之路 - 王者歸來 (全彩印刷第三版)$1,080$853 -
資料科學輕鬆學 (Data Analytics Made Accessible)$480$379 -
AI 必須!從做中學貝氏統計 – 從事機器學習、深度學習、資料科學、大數據分析一定要懂的統計利器 (Bayesian Statistics for Beginners: A Step-By-Step Approach)$1,200$948 -
會動的演算法:61 個演算法動畫+全圖解逐步拆解,人工智慧、資料分析必備$620$490 -
Python ✕ Excel 高效率打造辦公室作業+數據分析自動化$650$514 -
Python 大數據特訓班:資料自動化收集、整理、清洗、儲存、分析與應用實戰, 3/e (附320分鐘影音/範例程式)$520$411 -
親密的駭人 – 堅固網路安全建設從內網開始$880$695 -
Python 初學特訓班:從快速入門、主流應用到 AI 全面實戰, 6/e (附超過500分鐘影音教學/範例程式)$490$387 -
輕量又漂亮的 Python Web 框架 - Streamlit AI 時代非學不可$690$545 -
Python 自學聖經:從程式素人到開發強者的技術、實戰與 AI 應用大全, 3/e (附影音/範例程式)$880$695
相關主題
商品描述
內容介紹:
【題材涵蓋最全面!一本書掌握資料科學 / 數據工程必學 know-how!】
從大數據到人工智慧世代,其背後蘊含的關鍵技術與理論不脫資料科學、機器學習的範疇。基本上,資料科學需要的背景知識與技能相當的多,通常要會 Python 程式設計基礎、熟悉相關 Python 套件和模組的使用;再加上機器學習的基礎就是機率和統計,因此也免不了得學機率和統計知識,可說有一拖拉庫的主題等著你去學,也難怪市面上各主題 (程式基礎、統計、套件、機器學習建模...) 的專書滿坑滿谷,一時間實在讓人難以消化...
為了降低讀者初學資料科學面對的負擔以及混亂感,我們精心設計了這本入門實戰教本,秉持讓讀者「買一本抵多本」的精神,本書一次涵蓋所有入門必須熟悉的重要題材,同時也將初學資料科學的脈絡梳理清楚。
在章節的安排上,本書從資料取得的網路爬蟲開始,提供一個標準 SOP 來幫助讀者從網路取得資料;接著說明資料科學必學的 Python 重量級套件,再接著介紹機率、統計和探索式資料分析的基礎知識,最後進入最熱門的機器學習、深度學習建模主題。
這一連串「取得資料 → 探索資料 → 預測分析」是一套完整的資料科學 / 數據工程實戰訓練,跟著本書掌握這些重要 know-how 後,就不難看懂網路上眾多資料科學、機器學習專案的 Python 程式碼和線上教材,甚至參與資料科學、機器學習的網路競賽;希望本書能協助讀者開啟資料科學家 / 數據工程師的成功之路!
本書特色:
□ 資料科學三部曲:取得資料 → 探索資料 → 預測分析
□ 一次補足最入門的統計和機率基礎
□ Python 開發環境與基礎語法快速上手
□ 從網頁爬蟲、資料清理到資料視覺化,快速完成資料探索的預處理程序
□ 將清理後的資料存入 SQL 資料庫,便於日後存取利用
□ 實踐資料科學的四大套件:NumPy、Pandas、Matplotlib、Seaborn 一次掌握
□ 用 Scikit-learn、tensorflow.Keras 套件實作最熱門的 AI 機器學習應用
作者簡介
陳會安
學歷:美國猶他州州立大學電腦碩士
經歷:多所大專院校企業講師、松崗電腦產品經理、美商 PH 出版經理、專業電腦書作者
國內知名資訊技術作家,已出版超過 100 本電腦著作,包括:程式設計、網頁設計、資料庫、系統分析、資料結構等各種不同主題。近年研究人工智慧、機器學習 / 深度學習、資料科學、網路爬蟲、大數據分析和物聯網相關課程與圖書寫作。
目錄大綱
目錄:
第一篇 資料科學和 Python 基礎
第 1 章 資料科學概論與開發環境建立 – Anaconda
第 2 章 Python 程式語言
第二篇 網路爬蟲和 Open Data (取得、清理與儲存資料)
第 3 章 取得網路資料
第 4 章 資料擷取
第 5 章 資料清理與資料儲存
第 6 章 網路爬蟲實作案例
第三篇 Python資料科學套件 – 探索資料(資料視覺化與大數據分析)
第 7 章 向量與矩陣運算 – NumPy 套件
第 8 章 資料處理與分析 – Pandas 套件
第 9 章 大數據分析 (一) – Matplotlib 和 Pandas 資料視覺化
第 10 章 大數據分析 (二) – Seaborn 統計資料視覺化
第 11 章 機率與統計
第 12 章 估計與檢定
第 13 章 探索性資料分析實作案例
第四篇 人工智慧、機器學習與深度學習 – 預測資料
第 14 章 人工智慧與機器學習概論 – 認識深度學習
第 15 章 機器學習演算法實作案例 – 迴歸
第 16 章 機器學習演算法實作案例 – 分類與分群
第 17 章 深度學習神經網路實作案例
附錄 A:HTML 網頁結構與 CSS
附錄 B:Python 文字檔案存取與字串處理
附錄 C:下載與安裝 MongoDB 和 MySQL 資料庫









