Multicore and GPU Programming: An Integrated Approach, 2/e (美國原版)
暫譯: 多核心與 GPU 程式設計:整合方法,第二版 (美國原版)
Barlas, Gerassimos
- 出版商: Morgan Kaufmann
- 出版日期: 2022-06-02
- 售價: $4,180
- 貴賓價: 9.5 折 $3,971
- 語言: 英文
- 頁數: 1024
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0128141204
- ISBN-13: 9780128141205
-
相關分類:
CUDA
立即出貨 (庫存=1)
買這商品的人也買了...
-
作業系統$620$558 -
GLSL Essentials$1,470$1,397 -
$1,710CUDA for Engineers: An Introduction to High-Performance Parallel Computing -
打開量化投資的黑箱, 2/e (Inside the Black Box: A Simple Guide to Quantitative and High Frequency Trading, 2/e)$534$507 -
為你自己學 Git$500$425 -
區塊鏈|未來經濟的藍圖 (Blockchain: Blueprint for a New Economy)$380$300 -
特洛伊木馬病毒程式設計:使用 Python$520$406 -
Hands-On GPU Programming with Python and CUDA: Boost your application's performance and productivity with CUDA: Explore high-performance parallel computing with CUDA (Paperback)$1,740$1,653 -
圖形演算法|Apache Spark 與 Neo4j 實務範例 (Graph Algorithms)$580$458 -
C++17 教學範本, 5/e (Beginning C++17, 5/e)$880$748 -
Systems Performance, 2/e (Paperback)$2,550$2,423 -
BPF 之巔:洞悉 Linux 系統和應用性能 (BPF Performance Tools)$1,194$1,134 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$790 -
開發者傳授 PyTorch 秘笈$1,200$948 -
性能之巔:系統、企業與雲可觀測性, 2/e$1,428$1,357 -
計算機系統開發與優化實戰$659$626 -
Google 的軟體工程之道|從程式設計經驗中吸取教訓 (Software Engineering at Google)$880$695 -
iOS 16 程式設計實戰 -- SwiftUI 全面剖析$560$476 -
不只是 CUDA,通用 GPU 程式模型及架構原理$780$616 -
Engineering Manager's Handbook: An insider's guide to managing software development and engineering teams$1,570$1,492 -
C++ Programming for Linux Systems: Create robust enterprise software for Linux and Unix-based operating systems (Paperback)$1,640$1,558 -
Identity-Native Infrastructure Access Management: Preventing Breaches by Eliminating Secrets and Adopting Zero Trust (Paperback)$1,596$1,512 -
Programming Your GPU with OpenMP: Performance Portability for GPUs (Paperback)$2,800$2,660 -
$354基於近鄰思想和同步模型的聚類算法 -
Defensive Security Handbook: Best Practices for Securing Infrastructure (Paperback)$2,242$2,124
相關主題
商品描述
Multicore and GPU Programming: An Integrated Approach, Second Edition offers broad coverage of key parallel computing tools, essential for multi-core CPU programming and many-core massively parallel computing. Using threads, OpenMP, MPI, CUDA and other state-of-the-art tools, the book teaches the design and development of software capable of taking advantage of modern computing platforms that incorporate CPUs, GPUs and other accelerators.
Presenting material refined over more than two decades of teaching parallel computing, author Gerassimos Barlas minimizes the challenge of transitioning from sequential programming to mastering parallel platforms with multiple examples, extensive case studies, and full source code. By using this book, readers will better understand how to develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting parallel machines.
商品描述(中文翻譯)
《多核心與 GPU 程式設計:綜合方法(第二版)》廣泛涵蓋了關鍵的平行計算工具,這些工具對於多核心 CPU 程式設計和多核心大規模平行計算至關重要。這本書使用執行緒、OpenMP、MPI、CUDA 及其他最先進的工具,教授設計和開發能夠利用現代計算平台(包括 CPU、GPU 和其他加速器)的軟體。
作者 Gerassimos Barlas 在教授平行計算的過程中,經過超過二十年的精煉,最小化了從順序程式設計轉換到掌握平行平台的挑戰,並提供了多個範例、廣泛的案例研究和完整的源代碼。透過這本書,讀者將更好地理解如何開發在分散式記憶體機器上運行的程式,使用 MPI 創建多執行緒應用程式,無論是使用函式庫還是指令,撰寫優化的應用程式以平衡可用計算資源之間的工作負載,並針對平行機器進行程式的性能分析和除錯。