Brain Computation as Hierarchical Abstraction
暫譯: 大腦計算作為階層抽象
Dana H. Ballard
- 出版商: MIT
- 出版日期: 2015-02-20
- 售價: $2,280
- 貴賓價: 9.5 折 $2,166
- 語言: 英文
- 頁數: 456
- 裝訂: Hardcover
- ISBN: 0262028611
- ISBN-13: 9780262028615
-
相關分類:
Reinforcement
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,390New Directions in Statistical Signal Processing: From Systems to Brains -
Correlative Learning: A Basis for Brain and Adaptive Systems$7,010$6,660 -
Networks of the Brain (Hardcover)$980$960 -
Adaptive Filter Theory, 5/e (IE-Paperback)$1,300$1,274 -
時間序列分析$1,000$900 -
$294超標量處理器設計 -
從零開始學架構:照著做,你也能成為架構師$594$564 -
一書貫通 -- 從資料科學橫入人工智慧領域$650$553 -
MIS 一定要懂的 82個伺服器建置與管理知識$420$332 -
iOS 12 App 程式開發實務心法:30個製作專業級 iOS App 完全實戰攻略$850$663 -
數據分析的力量 Google、Uber 都在用的因果關係思考法$300$255 -
A-Life|使用 Python 實作人工生命模型$520$411 -
$280特徵工程入門與實踐 (Feature Engineering Made Easy) -
因果革命:人工智慧的大未來 (硬殼精裝)(The Book of Why: The New Science of Cause and Effect)$680$578 -
建立演進式系統架構|支援常態性的變更 (Building Evolutionary Architectures: Support Constant Change)$480$379 -
這就是服務設計!|服務設計工作者的實踐指南 (This Is Service Design Doing: Applying Service Design Thinking in the Real World)$880$695 -
失控的數據:數字管理的誤用與濫用,如何影響我們的生活與工作,甚至引發災難$380$342 -
深度學習|生命科學應用 (Deep Learning for the Life Sciences)$580$458 -
持續交付 2.0:實務導向的 DevOps$680$530 -
動手做深度強化學習 (Deep Reinforcement Learning Hands-On)$690$538 -
信號完整性與電源完整性分析, 3/e (Signal and Power Integrity - Simplified, 3/e)$774$735 -
深度學習的商戰必修課:人工智慧實用案例解析,看35家走在時代尖端的日本企業如何翻轉思考活用AI$420$332 -
人類智慧的神殿:AI知識圖譜實作$890$703 -
$378產品經理方法論 構建完整的產品知識體系 -
Node.js 量化投資全攻略:從資料收集到自動化交易系統建構實戰(iThome鐵人賽系列書)【軟精裝】$760$593
商品描述
The vast differences between the brain's neural circuitry and a computer's silicon circuitry might suggest that they have nothing in common. In fact, as Dana Ballard argues in this book, computational tools are essential for understanding brain function. Ballard shows that the hierarchical organization of the brain has many parallels with the hierarchical organization of computing; as in silicon computing, the complexities of brain computation can be dramatically simplified when its computation is factored into different levels of abstraction.
Drawing on several decades of progress in computational neuroscience, together with recent results in Bayesian and reinforcement learning methodologies, Ballard factors the brain's principal computational issues in terms of their natural place in an overall hierarchy. Each of these factors leads to a fresh perspective. A neural level focuses on the basic forebrain functions and shows how processing demands dictate the extensive use of timing-based circuitry and an overall organization of tabular memories. An embodiment level organization works in reverse, making extensive use of multiplexing and on-demand processing to achieve fast parallel computation. An awareness level focuses on the brain's representations of emotion, attention and consciousness, showing that they can operate with great economy in the context of the neural and embodiment substrates.
商品描述(中文翻譯)
大腦的神經電路與計算機的矽電路之間的巨大差異可能會讓人認為它們毫無共同之處。事實上,正如Dana Ballard在本書中所主張的,計算工具對於理解大腦功能至關重要。Ballard展示了大腦的層級組織與計算的層級組織之間的許多相似之處;就像在矽計算中,當將大腦計算的複雜性分解為不同的抽象層次時,可以顯著簡化其計算過程。
基於幾十年來在計算神經科學方面的進展,以及最近在貝葉斯和強化學習方法論中的成果,Ballard將大腦的主要計算問題根據其在整體層級中的自然位置進行分解。這些因素中的每一個都提供了一種全新的視角。神經層級專注於基本的前腦功能,顯示出處理需求如何決定廣泛使用基於時間的電路以及整體的表格記憶組織。具身層級的組織則反向運作,廣泛利用多工處理和按需計算來實現快速的並行計算。意識層級專注於大腦對情感、注意力和意識的表徵,顯示它們在神經和具身基礎的背景下可以以極高的經濟性運作。
