Semi-Supervised Learning (Paperback)
暫譯: 半監督學習(平裝本)
Olivier Chapelle, Bernhard Schölkopf, Alexander Zien
- 出版商: MIT
- 出版日期: 2010-03-31
- 售價: $1,830
- 貴賓價: 9.5 折 $1,739
- 語言: 英文
- 頁數: 524
- 裝訂: Paperback
- ISBN: 0262514125
- ISBN-13: 9780262514125
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
深入淺出 Java 程式設計, 2/e (Head First Java, 2/e)$880$695 -
Linux 驅動程式, 3/e (Linux Device Drivers, 3/e)$980$774 -
深入淺出軟體開發 (Head First Software Development)$680$537 -
精通 Objective-C 2.0 程式設計 (Programming in Objective-C 2.0, 2/e)$680$537 -
鳥哥的 Linux 私房菜-基礎學習篇, 3/e$820$648 -
軟體測試之道-微軟測試團隊的成功經驗、方法與技術 (How We Test Software at Microsoft)$580$458 -
約耳趣談軟體-來自專案管理的現場實錄 (Joel on Software: And on Diverse and Occasionally Related Matters That Will Prove of Interest to Software Developers)$490$387 -
深入淺出 Android 系統原理及開發要點$450$351 -
ASP.NET 4.0 專題實務 I─實戰入門篇使用 VB$750$593 -
接案我最行!JavaScript & Ajax 商業範例必殺技$480$408 -
漫步雲端:虛擬化技術之實戰 VMware$450$356 -
Hyper-V R2 叢集虛擬化技術-容錯移轉、線上備份、集中管理(附教學DVD)$520$364 -
前進 Android Market!Google Android SDK 實戰演練$850$672 -
Hello!HTML5 (Introducing HTML5)$450$356 -
Google Android SDK 開發範例大全, 3/e$950$751 -
雲端資安與隱私-企業風險應對之道 (Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance)$580$458 -
Google 御用網頁語言 Node.js:一流程式設計師養成精華$490$417 -
40 條彩色排線 20cm 母對母
$100$95 -
Bad Data 技術手冊 (Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work)$480$379 -
Make: Electronics 圖解電子實驗專題製作 (MAKE: Electronics: Learning Through Discovery)$580$458 -
嵌入式 Android 系統 (Embedded Android: Porting, Extending, and Customizing)$680$537 -
透視 C語言指標-深度探索記憶體管理核心技術 (Understanding and Using C Pointers)$480$379 -
$720Nursing Informatics And The Foundation Of Knowledge, 2/e (Paperback) -
Kali Linux 滲透測試工具$490$387 -
LinkIt ONE 物聯網實作入門$280$252
商品描述
In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.
Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.
Adaptive Computation and Machine Learning series
Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.
Adaptive Computation and Machine Learning series
商品描述(中文翻譯)
在機器學習領域,半監督學習(Semi-Supervised Learning, SSL)位於監督學習(所有訓練範例都有標籤)和非監督學習(沒有標籤數據)之間。近年來,對於SSL的興趣增加,特別是在標籤數據稀缺的應用領域,例如圖像、文本和生物資訊學。本書是對SSL的首次全面概述,介紹了最先進的演算法、該領域的分類、選定的應用、基準實驗以及對當前和未來研究的展望。
《半監督學習》首先介紹了該領域的關鍵假設和理念:平滑性、聚類或低密度分離、流形結構和傳導。書中的核心是根據演算法策略組織的SSL方法介紹。在檢視生成模型後,書中描述了實現低密度分離假設的演算法、基於圖的方法以及執行兩步學習的演算法。接著,書中討論了SSL的應用,並通過分析廣泛的基準實驗結果為SSL從業者提供指導。最後,書中探討了SSL研究的有趣方向。本書以討論半監督學習與傳導之間的關係作結。
《自適應計算與機器學習系列》
