Matrix Groups
暫譯: 矩陣群組
Curtis, M. L.
- 出版商: Springer
- 出版日期: 1984-10-31
- 售價: $3,620
- 貴賓價: 9.5 折 $3,439
- 語言: 英文
- 頁數: 228
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0387960740
- ISBN-13: 9780387960746
-
相關分類:
線性代數 Linear-algebra
海外代購書籍(需單獨結帳)
相關主題
商品描述
These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I "group" is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A 0, and define the general linear group GL(n, k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R, en, llin and write xA for the row vector obtained by matrix multiplication. We get a omplex-valued determinant function on Mn (11) such that det A 0 guarantees that A has an inverse.
商品描述(中文翻譯)
這些筆記是根據1976年春季在萊斯大學(Rice University)教授的課程以及1977年春季在夏威夷大學(University of Hawaii)再次教授的課程所發展而成。假設學生對線性代數有一定的了解,並對向量值函數的微分有一些認識。這個課程的目的是向學生介紹李群理論(Lie group theory)的一些概念,所有內容都在矩陣群的具體層面上進行。我們盡可能地將發展動機化,以決定何時兩個具有不同定義的矩陣群是同構的。在第一章中定義了「群」(group),並給出了例子;同態(homomorphism)和同構(isomorphism)也被定義。對於域 k,表示 n x n 矩陣的代數為 Mn(k)。我們回顧到 A ∈ Mn(k) 當且僅當 det A ≠ 0 時,A 才有逆矩陣,並定義一般線性群 GL(n, k)。我們構造了偏域 lli 以在四元數(quaternions)上進行線性運算,並注意到對於 A ∈ Mn(lli),我們必須從右側進行運算(因為我們將向量乘以標量 n 時是在左側進行的)。因此,我們對 R、en、lli 使用行向量,並寫 xA 來表示通過矩陣乘法獲得的行向量。我們在 Mn(lli) 上獲得了一個複值行列式函數,使得 det A ≠ 0 保證 A 有逆矩陣。