Biomedical Optics: Principles and Imaging (Hardcover) (生物醫學光學:原理與影像)

Lihong V. Wang, Hsin-i Wu

  • 出版商: Wiley
  • 出版日期: 2007-05-01
  • 售價: $1,880
  • 貴賓價: 9.8$1,842
  • 語言: 英文
  • 頁數: 376
  • 裝訂: Hardcover
  • ISBN: 0471743046
  • ISBN-13: 9780471743040
  • 相關分類: 光學 Optics
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

相關主題

商品描述

Description

This entry-level textbook, covering the area of tissue optics, is based on the lecture notes for a graduate course (Bio-optical Imaging) that has been taught six times by the authors at Texas A&M University. After the fundamentals of photon transport in biological tissues are established, various optical imaging techniques for biological tissues will be covered. The imaging modalities will include ballistic imaging, quasi-ballistic imaging (optical coherence tomography), diffusion imaging, and ultrasound-aided hybrid imaging. The basic physics and engineering of each imaging technique will be emphasized.
 

Table of Contents

1. INTRODUCTION.

1.1.Motivation for optical imaging.

1.2.General behavior of light in biological tissue.

1.3.Basic physics of light-matter interaction.

1.4.Absorption and its biological origins.

1.5.Scattering and its biological origins.

1.6.Polarization and its biological origins.

1.7.Fluorescence and its biological origins.

1.8.Image characterization.

1.9.References.

1.10.Further readings.

1.11.Problems.

2. RAYLEIGH THEORY AND MIE THEORY FOR A SINGLE SCATTERER.

2.1.Introduction.

2.2.Summary of the Rayleigh theory.

2.3.Numerical example of the Rayleigh theory.

2.4.Summary of the Mie theory.

2.5.Numerical example of the Mie theory.

2.6.Appendix 2.A. Derivation of the Rayleigh theory.

2.7.Appendix 2.B. Derivation of the Mie theory.

2.8.References.

2.9.Further readings.

2.10.Problems.

3. MONTE CARLO MODELING OF PHOTON TRANSPORT IN BIOLOGICAL TISSUE.

3.1.Introduction.

3.2.Monte Carlo method.

3.3.Definition of problem.

3.4.Propagation of photons.

3.5.Physical quantities.

3.6.Computational examples.

3.7.Appendix 3.A. Summary of MCML.

3.8.Appendix 3.B. Probability density function.

3.9.References.

3.10.Further readings.

3.11.Problems.

4. CONVOLUTION FOR BROAD-BEAM RESPONSES.

4.1.Introduction.

4.2.General formulation of convolution.

4.3.Convolution over a Gaussian beam.

4.4.Convolution over a top-hat beam.

4.5.Numerical solution to convolution.

4.6.Computational examples.

4.7.Appendix 4.A. Summary of CONV.

4.8.References.

4.9.Further readings.

4.10.Problems.

5. RADIATIVE TRANSFER EQUATION AND DIFFUSION THEORY.

5.1.Introduction.

5.2.Definitions of physical quantities.

5.3.Derivation of the radiative transport equation.

5.4.Diffusion theory.

5.5.Boundary conditions.

5.6.Diffuse reflectance.

5.7.Photon propagation regimes.

5.8.References.

5.9.Further readings.

5.10.Problems.

6. HYBRID MODEL OF MONTE CARLO METHOD AND DIFFUSION THEORY.

6.1.Introduction.

6.2.Definition of problem.

6.3.Diffusion theory.

6.4.Hybrid model.

6.5.Numerical computation.

6.6.Computational examples.

6.7.References.

6.8.Further readings.

6.9.Problems.

7. SENSING OF OPTICAL PROPERTIES AND SPECTROSCOPY.

7.1.Introduction.

7.2.Collimated transmission method.

7.3.Spectrophotometry.

7.4.Oblique-incidence reflectometry.

7.5.White-light spectroscopy.

7.6.Time-resolved measurement.

7.7.Fluorescence spectroscopy.

7.8.Fluorescence modeling.

7.9.References.

7.10.Further readings.

7.11.Problems.

8. BALLISTIC IMAGING AND MICROSCOPY.

8.1.Introduction.

8.2.Characteristics of ballistic light.

8.3.Time-gated imaging.

8.4.Spatial-frequency filtered imaging.

8.5.Polarization-difference imaging.

8.6.Coherence-gated holographic imaging.

8.7.Optical heterodyne imaging.

8.8.Radon transformation and computed tomography.

8.9.Confocal microscopy.

8.10.Two-photon microscopy.

8.11.Appendix 8.A. Holography.

8.12.References.

8.13.Further readings.

8.14.Problems.

9. OPTICAL COHERENCE TOMOGRAPHY.

9.1.Introduction.

9.2.Michelson interferometry.

9.3.Coherence length and coherence time.

9.4.Time-domain OCT.

9.5.Fourier-domain rapid scanning optical delay line.

9.6.Fourier-domain OCT.

9.7.Doppler OCT.

9.8.Group velocity dispersion.

9.9.Monte Carlo modeling of OCT.

9.10.References.

9.11.Further readings.

9.12.Problems.

10. MUELLER OPTICAL COHERENCE TOMOGRAPHY.

10.1.Introduction.

10.2.Mueller calculus versus Jones calculus.

10.3.Polarization state.

10.4.Stokes vector.

10.5.Mueller matrix.

10.6.Mueller matrices for a rotator, a polarizer, and a retarder.

10.7.Measurement of Mueller matrix.

10.8.Jones vector.

10.9.Jones matrix.

10.10.Jones matrices for a rotator, a polarizer, and a retarder.

10.11.Eigenvectors and eigenvalues of Jones matrix.

10.12.Conversion from Jones calculus to Mueller calculus.

10.13.Degree of polarization in OCT.

10.14.Serial Mueller OCT.

10.15.Parallel Mueller OCT.

10.16.References.

10.17.Further readings.

10.18.Problems.

11. DIFFUSE OPTICAL TOMOGRAPHY.

11.1.Introduction.

11.2.Modes of diffuse optical tomography.

11.3.Time-domain system.

11.4.Direct-current system.

11.5.Frequency-domain system.

11.6.Frequency-domain theory: basics.

11.7.Frequency-domain theory: linear image reconstruction.

11.8.Frequency-domain theory: general image reconstruction.

11.9.Appendix 11.A. ART and SIRT.

11.10.References.

11.11.Further readings.

11.12.Problems.

12. PHOTOACOUSTIC TOMOGRAPHY.

12.1.Introduction.

12.2.Motivation for photoacoustic tomography.

12.3.Initial photoacoustic pressure.

12.4.General photoacoustic equation.

12.5.General forward solution.

12.6.Delta-pulse excitation of a slab.

12.7.Delta-pulse excitation of a sphere.

12.8.Finite-duration pulse excitation of a thin slab.

12.9.Finite-duration pulse excitation of a small sphere.

12.10.Dark-field confocal photoacoustic microscopy.

12.11.Synthetic aperture image reconstruction.

12.12.General image reconstruction.

12.13.Appendix 12.A. Derivation of acoustic wave equation.

12.14.Appendix 12.B. Green's function approach.

12.15.References.

12.16.Further readings.

12.17.Problems.

13. ULTRASOUND-MODULATED OPTICAL TOMOGRAPHY.

13.1.Introduction.

13.2.Mechanisms of ultrasonic modulation of coherent light.

13.3.Time-resolved frequency-swept UOT.

13.4.Frequency-swept UOT with parallel-speckle detection.

13.5.Ultrasonically modulated virtual optical source.

13.6.Reconstruction-based UOT.

13.7.UOT with Fabry-Perot interferometry.

13.8.References.

13.9.Further readings.

13.10.Problems.

APPENDIX A. DEFINITIONS OF OPTICAL PROPERTIES.

APPENDIX B. ACRONYMS USED IN THE BOOK.

商品描述(中文翻譯)

描述

這本入門教材涵蓋組織光學領域,基於作者在德州A&M大學教授的研究生課程(生物光學成像)的講義。在建立生物組織中光子傳輸的基礎後,將介紹各種生物組織的光學成像技術。成像模式包括彈道成像、準彈道成像(光學相干斷層掃描)、擴散成像和超聲輔助混合成像。將強調每種成像技術的基本物理和工程學。

目錄

1. 簡介
1.1. 光學成像的動機
1.2. 生物組織中光的一般行為
1.3. 光與物質相互作用的基本物理
1.4. 吸收及其生物起源
1.5. 散射及其生物起源
1.6. 偏振及其生物起源
1.7. 螢光及其生物起源
1.8. 圖像特徵
1.9. 參考文獻
1.10. 進一步閱讀
1.11. 問題

2. 瑞利理論和米氏理論的單一散射體
2.1. 簡介
2.2. 瑞利理論摘要
2.3. 瑞利理論的數值例子
2.4. 米氏理論摘要
2.5. 米氏理論的數值例子
2.6. 附錄2.A. 瑞利理論的推導
2.7. 附錄2.B. 米氏理論的推導
2.8. 參考文獻

(以下省略)