Statistical Inference: The Minimum Distance Approach
暫譯: 統計推斷:最小距離方法

Basu, Ayanendranath, Shioya, Hiroyuki, Park, Chanseok

  • 出版商: CRC
  • 出版日期: 2023-01-21
  • 售價: $2,090
  • 貴賓價: 9.5$1,986
  • 語言: 英文
  • 頁數: 430
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032477636
  • ISBN-13: 9781032477633
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Statistical Inference: The Minimum Distance Approach comprehensively overviews developments in density-based minimum distance inference for independently and identically distributed data. Extensions to other more complex models are also discussed.

Comprehensively covering the basics and applications of minimum distance inference, this book introduces and discusses:

  • The estimation and hypothesis testing problems for both discrete and continuous models
  • The robustness properties and the structural geometry of the minimum distance methods
  • The inlier problem and its possible solutions, and the weighted likelihood estimation problem
  • The extension of the minimum distance methodology in interdisciplinary areas, such as neural networks and fuzzy sets, as well as specialized models and problems, including semi-parametric problems, mixture models, grouped data problems, and survival analysis.

Statistical Inference: The Minimum Distance Approach gives a thorough account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adjustment functions, graphical descriptions of robustness, penalized and combined distances, weighted likelihood, and multinomial goodness-of-fit tests. This carefully crafted resource is useful to researchers and scientists within and outside the statistics arena.

商品描述(中文翻譯)

在許多方面,透過適當的最小距離方法進行估計是統計學中最自然的想法之一。然而,構建數據與模型之間適當距離的方式有很多種:「最小距離估計」所指的研究範圍實際上是非常廣泛的。為了填補統計資源的空白,《統計推論:最小距離方法》全面概述了針對獨立同分佈數據的基於密度的最小距離推斷的發展。書中也討論了對其他更複雜模型的擴展。

本書全面涵蓋了最小距離推斷的基本概念和應用,介紹並討論了:

- 離散模型和連續模型的估計和假設檢驗問題
- 最小距離方法的穩健性特性和結構幾何
- 內點問題及其可能的解決方案,以及加權似然估計問題
- 最小距離方法在跨學科領域的擴展,例如神經網絡和模糊集,以及專門模型和問題,包括半參數問題、混合模型、分組數據問題和生存分析。

《統計推論:最小距離方法》詳細介紹了基於密度的最小距離方法及其在統計推斷中的應用。內容涵蓋統計距離、基於密度的最小距離方法、離散和連續模型、漸近分佈、穩健性、計算問題、殘差調整函數、穩健性的圖形描述、懲罰性和組合距離、加權似然以及多項式適合度檢驗。這本精心編寫的資源對於統計領域內外的研究人員和科學家都非常有用。

作者簡介

Ayanendranath Basu, Hiroyuki Shioya, Chanseok Park

作者簡介(中文翻譯)

Ayanendranath Basu, Shioya Hiroyuki, Park Chanseok