Dose-Exposure-Response Modeling: Methods and Practical Implementation
暫譯: 劑量-暴露-反應建模:方法與實務實現
Wang, Jixian
- 出版商: CRC
- 出版日期: 2026-02-19
- 售價: $6,440
- 貴賓價: 9.5 折 $6,118
- 語言: 英文
- 頁數: 346
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032596252
- ISBN-13: 9781032596259
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This thoroughly revised and updated new edition reflects the progress that has been made in dose-exposure-response (DER) modeling. As the title suggests, the new edition covers more topics on dose and dose adjustment. A large part of the book has been rewritten, including an updated Bayesian analysis and modeling chapter with new materials on ap-proximate Bayesian modeling with misspecified models, Bayesian bootstrap for the "cut-the-feedback" approach, and meta-regression with Stan codes for implementation. Two new chapters in this edition include one on causal DER modeling, with an introduction to the concept of causal DER relationship, approaches such as the generalized propensity score and instrumental/control function approaches for adjustment for observed and un-observed confounders, and Bayesian causal DER modeling. Another new chapter is dedicated to learning DER relationships with the concept and methods of machine learning, including applications to adaptive dose finding trials by bandits, contextual bandits, and Thompson sampling with Bayesian bootstrap, adaptive control for tracking using a dynamic model with an application for individual warfarin dosing. The new appendix contains non-standard materials used in the book.
Applied statisticians and modelers can find details on how to implement new approaches, while researchers can find topics for or applications of their work. In addition, students can see how complicated methodology and models are applied to practical situations.
Key Features:
- Provides SAS, R, and Stan codes that will enable readers to test the approaches in their own scenarios.
- Gives a systematic treatment of concepts and methodology.
- Helps with understanding concepts and evaluating the performance of new methods, particularly those in Chapters 7, 8, and 9.
- Includes a large amount of R codes for methods introduced in the new materials in chapters on Bayesian analyses, causal inference, and dose-adjustment.
- Includes a simulation to show how some complex methods such as generalized propensity score adjustment and adaptive dose adjustment can be implemented with simple codes.
商品描述(中文翻譯)
這本經過徹底修訂和更新的新版本反映了在劑量-暴露-反應(DER)建模方面所取得的進展。正如標題所示,新版本涵蓋了更多有關劑量和劑量調整的主題。本書的大部分內容已被重寫,包括更新的貝葉斯分析和建模章節,新增了有關錯誤指定模型的近似貝葉斯建模、用於「切斷反饋」方法的貝葉斯自助法,以及使用Stan代碼實現的元回歸。這一版本新增的兩個章節包括一個關於因果DER建模的章節,介紹了因果DER關係的概念,調整觀察到和未觀察到的混雜因素的方法,如廣義傾向分數和工具/控制函數方法,以及貝葉斯因果DER建模。另一個新章節專注於利用機器學習的概念和方法來學習DER關係,包括通過強盜、上下文強盜和使用貝葉斯自助法的湯普森抽樣進行自適應劑量尋找試驗的應用,以及使用動態模型進行追蹤的自適應控制,並應用於個別華法林劑量的調整。新的附錄包含了本書中使用的非標準材料。
應用統計學家和建模者可以找到如何實施新方法的詳細資訊,而研究人員則可以找到他們工作的主題或應用。此外,學生可以看到複雜的方法論和模型如何應用於實際情況。
主要特點:
- 提供SAS、R和Stan代碼,使讀者能夠在自己的情境中測試這些方法。
- 系統性地處理概念和方法論。
- 幫助理解概念並評估新方法的性能,特別是第7、8和9章中的方法。
- 包含大量R代碼,用於新材料中介紹的貝葉斯分析、因果推斷和劑量調整的章節。
- 包含一個模擬,展示如何用簡單的代碼實現一些複雜的方法,如廣義傾向分數調整和自適應劑量調整。
作者簡介
Jixian Wang is a statistical methodologist in Bristol Myers Squibb, Switzerland. He has worked on drug development for over twenty years and was an academic researcher before joining the pharmaceutical industry. His research interests include statistical methodology and its applications to real problems in pharmaceuticals, including exposure-safety, PKPD modeling, treatment/dose selection, health economics, benefit-risk and health technology assessments, and optimal trial design with 60+ publications on peer-reviewed journals.
作者簡介(中文翻譯)
王季賢是瑞士百時美施貴寶的統計方法學家。他在藥物開發領域工作了超過二十年,並在加入製藥行業之前曾是一名學術研究者。他的研究興趣包括統計方法及其在製藥領域實際問題中的應用,包括暴露-安全性、藥物動力學與藥效學(PKPD)建模、治療/劑量選擇、健康經濟學、效益-風險評估及健康技術評估,以及最佳試驗設計,並在同行評審期刊上發表了超過60篇論文。