Mastering Machine Learning with Python in Six Steps: A Practical Implementation Guide to Predictive Data Analytics Using Python (Paperback)
暫譯: 掌握 Python 機器學習的六個步驟:預測數據分析的實用實施指南
Manohar Swamynathan
- 出版商: Apress
- 出版日期: 2017-06-07
- 定價: $1,575
- 售價: 5.0 折 $788
- 語言: 英文
- 頁數: 358
- 裝訂: Paperback
- ISBN: 1484228650
- ISBN-13: 9781484228654
-
相關分類:
Machine Learning、Python
立即出貨(限量) (庫存=4)
買這商品的人也買了...
-
Design Patterns: Elements of Reusable Object-Oriented Software (Hardcover)$2,450$2,401 -
大話設計模式$620$490 -
物件導向設計模式-可再利用物件導向軟體之要素 (精裝典藏版) (Design Patterns: Elements of Reusable Object-Oriented Software)$550$550 -
計算機組織與設計 : 硬體/軟體的介面, 5/e (Patterson: Computer Organization and Design: The Hardware/Software Interface, 5/e)$1,250$1,188 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
Python 程式設計實務-從初學到活用 Python 開發技巧的16堂課$560$437 -
資訊科技概論, 3/e (含Office 2013應用)$420$332 -
iOS 10 App 程式設計實力超進化實戰攻略 : 知名 iOS教學部落格 AppCoda 作家親授實作關鍵技巧讓你不NG$720$562 -
$1,617Deep Learning (Hardcover) -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
演算法技術手冊, 2/e (Algorithms in a Nutshell: A Practical Guide, 2/e)$580$458 -
Effective SQL 中文版 | 寫出良好 SQL 的 61個具體做法 (Effective SQL : 61 Specific Ways to Write Better SQL)$450$356 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
Python 初學特訓班 (增訂版) (附250分鐘影音教學/範例程式)$480$379 -
$312Web API 的設計與開發 (Web API : the Good Parts) -
$857深度學習 -
實戰 TensorFlow|Google 深度學習系統$480$379 -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
初探機器學習|使用 Python (Thoughtful Machine Learning with Python)$480$379 -
鳳凰專案|看 IT部門如何讓公司從谷底翻身的傳奇故事$480$379 -
.NET 設計模式$480$379 -
單元測試的藝術, 2/e (The Art of Unit Testing: with examples in C#, 2/e)$650$507 -
TensorFlow For Dummies (Paperback)$1,350$1,283 -
Text Mining with MATLAB (Paperback)$3,560$3,382
相關主題
商品描述
Master machine learning with Python in six steps and explore fundamental to advanced topics, all designed to make you a worthy practitioner.
This book’s approach is based on the “Six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away. Mastering Machine Learning with Python in Six Steps presents each topic in two parts: theoretical concepts and practical implementation using suitable Python packages.
You’ll learn the fundamentals of Python programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as feature dimension reduction, regression, time series forecasting and their efficient implementation in Scikit-learn are also covered. Finally, you’ll explore advanced text mining techniques, neural networks and deep learning techniques, and their implementation.
All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage.
- Examine the fundamentals of Python programming language
- Review machine Learning history and evolution
- Understand machine learning system development frameworks
- Implement supervised/unsupervised/reinforcement learning techniques with examples
- Explore fundamental to advanced text mining techniques
- Implement various deep learning frameworks
Non-Python (R, SAS, SPSS, Matlab or any other language) machine learning practitioners looking to expand their implementation skills in Python.
Novice machine learning practitioners looking to learn advanced topics, such as hyperparameter tuning, various ensemble techniques, natural language processing (NLP), deep learning, and basics of reinforcement learning.
商品描述(中文翻譯)
透過六個步驟掌握 Python 的機器學習,並探索從基礎到進階的主題,所有內容旨在讓您成為一位值得信賴的實踐者。
本書的方式基於「六度分隔」理論,該理論指出每個人和每件事最多相隔六步。Mastering Machine Learning with Python in Six Steps 將每個主題分為兩個部分:理論概念和使用適當的 Python 套件進行的實作。
您將學習 Python 程式語言的基本概念、機器學習的歷史、演變以及系統開發框架。書中還涵蓋了關鍵的資料挖掘/分析概念,例如特徵維度縮減、回歸、時間序列預測及其在 Scikit-learn 中的高效實作。最後,您將探索進階的文本挖掘技術、神經網絡和深度學習技術及其實作。
書中所有的程式碼將以 iPython 筆記本的形式提供,讓您能夠嘗試這些範例並加以擴展以獲取更多優勢。
- 檢視 Python 程式語言的基本概念
- 回顧機器學習的歷史和演變
- 理解機器學習系統開發框架
- 實作監督式/非監督式/強化學習技術及範例
- 探索從基礎到進階的文本挖掘技術
- 實作各種深度學習框架
希望擴展其在 Python 中實作技能的非 Python(R、SAS、SPSS、Matlab 或任何其他語言)機器學習實踐者。
希望學習進階主題的初學者機器學習實踐者,例如超參數調整、各種集成技術、自然語言處理(NLP)、深度學習和強化學習的基本概念。
