Neural Network Methods in Natural Language Processing (Synthesis Lectures on Human Language Technologies)
暫譯: 自然語言處理中的神經網絡方法(人類語言技術綜合講座)
Yoav Goldberg
- 出版商: Morgan & Claypool
- 出版日期: 2017-04-17
- 售價: $2,680
- 貴賓價: 9.5 折 $2,546
- 語言: 英文
- 頁數: 310
- 裝訂: Paperback
- ISBN: 1627052984
- ISBN-13: 9781627052986
-
相關分類:
Text-mining、DeepLearning、Natural Language Processing
立即出貨 (庫存=1)
買這商品的人也買了...
-
Foundations of Statistical Natural Language Processing (Hardcover)$4,600$4,370 -
Pattern Recognition and Machine Learning (Hardcover)$4,210$4,000 -
資料探勘 (Tan: Introduction to Data Mining)$660$627 -
Artificial Intelligence: A Modern Approach, 3/e (IE-Paperback)$1,300$1,274 -
Intel 系列微處理器-架構、規劃與介面, 8/e (The Intel Microprocessors, 8/e)$810$770 -
$2,835Next Generation Wireless LANs: 802.11n and 802.11ac, 2/e (Hardcover) -
ARM Cortex-M0 官方教材-嵌入式系統設計入門 (The Definitive Guide to the ARM Cortex-M0)$780$663 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
7天學會 Git 版本控制 (Git Essentials)$280$218 -
$354Web前端黑客技術揭秘 -
新世代全端介面開發:React.js 快速上手$580$493 -
$1,617Deep Learning (Hardcover) -
Raspberry Pi 3 樹莓派套件組--簡配A(含Pi 3 + 32G SD卡 + 電源)$2,200$2,090 -
超圖解 Arduino 互動設計入門, 3/e$680$578 -
王者歸來:WEKA 機器學習與大數據聖經, 3/e$590$502 -
$588NLP 漢語自然語言處理原理與實踐 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
Unreal Engine 4 藍圖完全學習教程 (典藏中文版)(Mite wakaru Unreal Engine 4 blue print chonyumon)$1,008$958 -
Android 7.X App 開發之鑰 -- 使用 Java 及 Android Studio$680$578 -
$454區塊鏈原理、設計與應用 -
XBee Zigbee Through-Hole(Wire Antenna) S2C 6mW$1,150$1,093 -
Python:期貨演算法交易實務 121個關鍵技巧詳解$500$390 -
$352TensorFlow機器學習實戰指南 -
Machine Learning for Future Wireless Communications (Hardcover)$1,960$1,921
相關主題
商品描述
Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries.
The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.
商品描述(中文翻譯)
神經網絡是一類強大的機器學習模型。本書專注於神經網絡模型在自然語言數據中的應用。本書的前半部分(第一部分和第二部分)涵蓋了監督式機器學習和前饋神經網絡的基本概念,處理語言數據的機器學習基礎,以及使用基於向量而非符號的單詞表示法。它還介紹了計算圖抽象,這使得能夠輕鬆定義和訓練任意神經網絡,並且是當代神經網絡軟件庫設計的基礎。
本書的第二部分(第三部分和第四部分)介紹了更專門的神經網絡架構,包括一維卷積神經網絡、遞歸神經網絡、條件生成模型和基於注意力的模型。這些架構和技術是當前機器翻譯、句法解析以及許多其他應用的最先進算法的推動力。最後,我們還討論了樹狀網絡、結構化預測以及多任務學習的前景。
