Machine Learning for Text
暫譯: 文本的機器學習
Charu C. Aggarwal
- 出版商: Springer
- 出版日期: 2018-04-03
- 售價: $2,980
- 貴賓價: 9.5 折 $2,831
- 語言: 英文
- 頁數: 493
- 裝訂: Hardcover
- ISBN: 3319735306
- ISBN-13: 9783319735306
-
相關分類:
Machine Learning、Text-mining
-
相關翻譯:
文本機器學習 (簡中版)
立即出貨(限量) (庫存=2)
買這商品的人也買了...
-
深入淺出設計模式 (Head First Design Patterns)$880$695 -
大象-Thinking in UML, 2/e (書頁有些許瑕疵,不介意再下單)$550$468 -
Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (Hardcover)$1,390$1,362 -
Essential Scrum:敏捷開發經典 (中文版) (Essential Scrum: A Practical Guide to the Most Popular Agile Process)
$680$530 -
資訊與網路安全概論:進入區塊鏈世界, 6/e$780$741 -
Flask 網頁開發, 2/e (Flask Web Development : Developing Web Applications with Python, 2/e)$580$458 -
區塊鏈智慧合約開發與安全防護實作$480$408 -
不只是金融商品:區塊鏈技術用程式碼實作$580$493 -
比特幣out、以太坊in: 超越交易實作區塊鏈技術$580$493 -
PHP 7 & MySQL 網站開發 -- 超威範例集, 3/e$560$442 -
PHP 動態網站系統開發與 Laravel 框架運用$580$493 -
和艦長一起 30 天玩轉 GitLab(iT邦幫忙鐵人賽系列書)$500$390 -
強化式學習:打造最強 AlphaZero 通用演算法$780$663 -
區塊鏈生存指南:帶你用 Python 寫出區塊鏈!(iT邦幫忙鐵人賽系列書)$520$406 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, Nlp, and Transformers Using Tensorflow (Paperback)$2,850$2,793 -
C++ 程式設計的樂趣|範例實作與專題研究的程式設計課 (C++ Crash Course: A Fast-Paced Introduction)$880$748 -
資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$473 -
資安這條路:領航新手的 Web Security 指南,以自建漏洞環境學習網站安全(iT邦幫忙鐵人賽系列書)$680$578 -
Knock Knock! Deep Learning:新手入門深度學習的敲門磚(iT邦幫忙鐵人賽系列書)$560$437 -
機器學習的統計基礎 : 深度學習背後的核心技術$680$537 -
Web 應用系統安全|現代 Web 應用程式開發的資安對策 (Web Application Security)$580$458 -
Keras 大神歸位:深度學習全面進化!用 Python 實作 CNN、RNN、GRU、LSTM、GAN、VAE、Transformer$1,200$948 -
區塊鏈生存指南:帶你用 Python 寫出區塊鏈!【第二版】(iT邦幫忙鐵人賽系列書)$600$468 -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$748
相關主題
商品描述
Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories:
- Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.
- Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods.
- Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection.
This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop).
This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.
商品描述(中文翻譯)
文本分析是一個位於資訊檢索、機器學習和自然語言處理交界處的領域,本教科書仔細涵蓋了從這些交叉主題中提煉出的有條理的框架。本教科書的章節分為三個類別:
**- 基本演算法:** 第1至第7章討論了從文本中進行機器學習的經典演算法,如預處理、相似度計算、主題建模、矩陣分解、聚類、分類、回歸和集成分析。
**- 領域敏感挖掘:** 第8和第9章討論了當文本與不同領域(如多媒體和網路)結合時的學習方法。資訊檢索和網路搜尋的問題也在其與排名和機器學習方法的關係背景下進行討論。
**- 序列中心挖掘:** 第10至第14章討論了各種序列中心和自然語言應用,如特徵工程、神經語言模型、深度學習、文本摘要、資訊提取、情感分析、文本分段和事件檢測。
本教科書詳細涵蓋了文本的機器學習主題。由於內容廣泛,可以根據課程級別從同一本書中提供多個課程。儘管呈現方式以文本為中心,第3至第7章涵蓋了通常用於文本數據以外領域的機器學習演算法。因此,本書不僅可以用於文本分析課程,還可以從更廣泛的機器學習(以文本為背景)的角度提供課程。
本教科書的目標讀者為計算機科學的研究生,以及在這些相關領域工作的研究人員、教授和業界從業人員。本教科書附有解答手冊以供課堂教學使用。












