R 語言統計入門, 2/e (Introductory Statistics with R, 2/e) R语言统计入门(第2版)
達爾加德 (Peter Dalgaard)
- 出版商: 人民郵電
- 出版日期: 2014-06-01
- 定價: $359
- 售價: 8.5 折 $305
- 語言: 簡體中文
- 頁數: 299
- 裝訂: 平裝
- ISBN: 7115348634
- ISBN-13: 9787115348630
-
相關分類:
R 語言
- 此書翻譯自: Introductory Statistics with R, 2/e (Paperback)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
最新 C程式語言$520$442 -
SAS 統計軟體與資料分析$360$353 -
金字塔原理 ─ 思考、寫作、解決問題的邏輯方法$480$379 -
大話設計模式$620$490 -
大話資料結構$590$466 -
Applied Digital Signal Processing: Theory and Practice (IE-Paperback)$1,400$1,372 -
我的程式碼會說話$280$218 -
實戰雲端作業系統建置與維護-VMware vSphere 5.5 虛擬化全面啟動$690$545 -
$534R 數據可視化手冊 (R Graphics Cookbook) -
Android 程式設計入門、應用到精通--增訂第三版 (適用 5.X~1.X, Android Wear 穿戴式裝置)$560$442 -
$245時間序列分析及應用 : R語言, 2/e (Time Series Analysis With Applications in R, 2/e) -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
認識虛擬化技術的第一本書(超圖解,學習無負擔)$380$300 -
$297R語言實戰, 2/e (R in Action: Data Analysis and Graphics with R, 2/e) -
Introductory Statistics, 10/e (Paperback)$1,360$1,333 -
$305R語言在統計中的應用 -
Python 資料科學學習手冊 (Python Data Science Handbook: Essential Tools for Working with Data)$780$616 -
Python 資料運算與分析實戰:一次搞懂 NumPy, SciPy, Matplotlib, Pandas 最強套件$590$502 -
$2,223Machine Learning and Security: Protecting Systems with Data and Algorithms -
Python 資料分析, 2/e (Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2/e)$880$695 -
$354目標定位跟蹤原理及應用——MATLAB模擬 -
$403Python 統計分析 (An Introduction to Statistics with Python: With Applications in the Life Sciences) -
數位影像處理 (Gonzalez & Woods : Digital Image Processing, 4/e)$880$862 -
$709R語言:實用數據分析和可視化技術, 2/e (R for Everyone: Advanced Analytics and Graphics, 2/e) -
R 錦囊妙計, 2/e (R Cookbook, 2/e)$880$695
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
<簡介>
《R語言統計入門(第2版)》以最恰當的方式向初學者介紹了R語言的全貌,內容涵蓋基本的R編程方法、基本數據處理和一些高級數據操作的技巧,有助於讀者理解R向量化編程的特點。此外,作者在《R語言統計入門(第2版)》中還詳細描述了包含回歸分析、假設檢驗、廣義線性模型、非線性擬合等常用統計方法的原理。雖然《R語言統計入門(第2版》以實際案例解析居多,但是並非不重視理論,作者恰當而到位地描述了理論方面的內容,既不晦澀,也非淺薄,而是向讀者打開了一扇窗。作者希望這《R語言統計入門(第2版)》可以作為一道“開胃菜”引導更多的人投入到對統計和R的研究之中。本書適合數據分析,數據統計人員及R用戶學習參考。
<目錄>
目 錄
第1章 基礎知識 1
1.1 初始步驟 1
1.1.1 大型計算器 2
1.1.2 賦值 3
1.1.3 向量運算 4
1.1.4 標準過程 5
1.1.5 作圖 6
1.2 R語言基礎 8
1.2.1 表達式和對象 8
1.2.2 函數和參數 9
1.2.3 向量 10
1.2.4 引用和轉義序列 10
1.2.5 缺失值 11
1.2.6 生成向量的函數 11
1.2.7 矩陣和數組 13
1.2.8 因子 15
1.2.9 列表 16
1.2.10 數據框 17
1.2.11 索引 17
1.2.12 條件選擇 18
1.2.13 數據框的索引 19
1.2.14 分組數據和數據框 20
1.2.15 隱式循環 21
1.2.16 排序 23
1.3 練習題 24
第2章 R語言環境 25
2.1 會話管理 25
2.1.1 工作空間窗口 25
2.1.2 文本輸出 26
2.1.3 腳本 27
2.1.4 獲取幫助 27
2.1.5 包 28
2.1.6 內置數據 29
2.1.7 attach和detach 29
2.1.8 subset,transform和within 31
2.2 作圖系統 32
2.2.1 圖形佈局 32
2.2.2 利用部分構造圖形 33
2.2.3 par的使用 34
2.2.4 組合圖形 35
2.3 R編程 36
2.3.1 流程控制 37
2.3.2 類和類函數 37
2.4 數據輸入 38
2.4.1 讀取文本文件 39
2.4.2 read.table的進一步討論 41
2.4.3 數據編輯器 42
2.4.4 其他程序的接口 43
2.5 練習題 44
第3章 概率和分佈 45
3.1 隨機抽樣 45
3.2 概率計算和排列組合 46
3.3 離散分佈 47
3.4 連續分佈 47
3.5 R中的內置分佈 48
3.5.1 密度 48
3.5.2 累積分佈函數 50
3.5.3 分位數 51
3.5.4 隨機數字 52
3.6 練習題 53
第4章 描述性統計和圖形 54
4.1 單組的匯總統計量 54
4.2 分佈的圖形展示 58
4.2.1 直方圖 58
4.2.2 經驗累積分佈 59
4.2.3 Q-Q圖 59
4.2.4 箱式圖 60
4.3 分組數據的匯總統計量 61
4.4 分組數據作圖 64
4.4.1 直方圖 64
4.4.2 並聯箱式圖 65
4.4.3 帶狀圖 66
4.5 表格 68
4.5.1 生成表格 68
4.5.2 邊際表格和相對頻數 71
4.6 表格的圖形顯示 72
4.6.1 條形圖 72
4.6.2 點圖 74
4.6.3 餅圖 75
4.7 練習題 76
第5章 單樣本與雙樣本檢驗 77
5.1 單樣本t檢驗 77
5.2 Wilcoxon符號秩檢驗 80
5.3 兩樣本t檢驗 82
5.4 比較方差 83
5.5 兩樣本Wilcoxon檢驗 84
5.6 配對t檢驗 85
5.7 配對Wilcoxon檢驗 86
5.8 練習題 87
第6章 回歸與相關性 88
6.1 簡單線性回歸 88
6.2 殘差與回歸值 92
6.3 預測與置信帶 95
6.4 相關性 98
6.4.1 皮爾遜相關係數 98
6.4.2 斯皮爾曼相關係數 99
6.4.3 肯德爾等級相關係數t 100
6.5 練習題 100
第7章 方差分析與Kruskal-Wallis檢驗 102
7.1 單因素方差分析 102
7.1.1 成對比較和多重檢驗 106
7.1.2 放寬對方差的假設 107
7.1.3 圖像表示 108
7.1.4 Bartlett檢驗 109
7.2 Kruskal-Wallis檢驗 110
7.3 雙因素方差分析 110
7.4 Friedman檢驗 114
7.5 回歸分析中的方差分析表 114
7.6 練習題 115
第8章 表格數據 117
8.1 單比例 117
8.2 兩個獨立的比例 118
8.3 k比例,檢驗趨勢 120
8.4 r ′ c表格 122
8.5 練習題 124
第9章 功效與樣本容量的計算 126
9.1 功效計算原則 126
9.1.1 單樣本t及配對樣本t檢驗的功效 127
9.1.2 兩樣本t檢驗的功效 128
9.1.3 近似方法 128
9.1.4 比較比例的功效 129
9.2 兩樣本問題 129
9.3 單樣本問題及配對樣本檢驗 131
9.4 比例的比較 131
9.5 練習題 132
第10章 數據處理的高級技術 133
10.1 變量的重編碼 133
10.1.1 cut函數 133
10.1.2 處理因子 135
10.1.3 日期的使用 136
10.1.4 多變量重編碼 139
10.2 條件計算 140
10.3 合併與重構數據框 141
10.3.1 追加數據框 141
10.3.2 合併數據框 142
10.3.3 重塑數據框 144
10.4 數據的分組及分案例操作 146
10.5 時間分割 148
10.6 練習題 152
第11章 多元回歸 153
11.1 多維數據繪圖 153
11.2 模型設定和模型輸出 155
11.3 模型篩選 157
11.4 練習題 161
第12章 線性模型 162
12.1 多項式回歸 163
12.2 過原點的回歸分析 165
12.3 設計矩陣與虛擬變量 166
12.4 組間的共線性 168
12.5 交互效應 172
12.6 可重複的雙因素方差分析 172
12.7 協方差分析 173
12.7.1 圖形描述 174
12.7.2 比較回歸線 177
12.8 模型診斷 183
12.9 練習題 187
第13章 邏輯回歸 189
13.1 廣義線性模型 190
13.2 表格化數據的邏輯回歸 190
13.2.1 偏差表分析 195
13.2.2 與趨勢檢驗之間的關聯 196
13.3 似然剖面分析 197
13.4 讓步比估計的表達 199
13.5 原始數據的邏輯回歸 199
13.6 預測 201
13.7 模型檢查 202
13.8 練習題 206
第14章 生存分析 208
14.1 重要概念 208
14.2 生存對象 209
14.3 Kaplan-Meier估計 210
14.4 對數秩檢驗 213
14.5 Cox比例風險模型 214
14.6 練習題 216
第15章 比率和泊松回歸 217
15.1 基本思想 217
15.1.1 泊松分佈 217
15.1.2 帶有常數風險的生存分析 218
15.2 泊松模型的擬合 219
15.3 計算比率 223
15.4 帶有常數強度的模型 226
15.5 練習題 230
第16章 非線性曲線擬合 231
16.1 基本用法 232
16.2 尋找初值 233
16.3 自啟動模型 238
16.4 剖面分析 240
16.5 更好地控制擬合算法 241
16.6 練習題 242
附錄A 獲取並安裝R以及ISwR包 243
附錄B ISwR中的數據集 246
附錄C 摘要 272
附錄D 練習題答案 283
