Semiparametric and Nonparametric Methods in Econometrics
暫譯: 經濟計量學中的半參數與非參數方法
Horowitz, Joel L.
- 出版商: Springer
- 出版日期: 2009-08-07
- 售價: $9,050
- 貴賓價: 9.5 折 $8,598
- 語言: 英文
- 頁數: 276
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0387928693
- ISBN-13: 9780387928692
-
相關分類:
Data Science、機率統計學 Probability-and-statistics、經濟學 Economy
海外代購書籍(需單獨結帳)
相關主題
商品描述
Standard methods for estimating empirical models in economics and many other fields rely on strong assumptions about functional forms and the distributions of unobserved random variables. Often, it is assumed that functions of interest are linear or that unobserved random variables are normally distributed. Such assumptions simplify estimation and statistical inference but are rarely justified by economic theory or other a priori considerations. Inference based on convenient but incorrect assumptions about functional forms and distributions can be highly misleading. Nonparametric and semiparametric statistical methods provide a way to reduce the strength of the assumptions required for estimation and inference, thereby reducing the opportunities for obtaining misleading results. These methods are applicable to a wide variety of estimation problems in empirical economics and other fields, and they are being used in applied research with increasing frequency.
The literature on nonparametric and semiparametric estimation is large and highly technical. This book presents the main ideas underlying a variety of nonparametric and semiparametric methods. It is accessible to graduate students and applied researchers who are familiar with econometric and statistical theory at the level taught in graduate-level courses in leading universities. The book emphasizes ideas instead of technical details and provides as intuitive an exposition as possible. Empirical examples illustrate the methods that are presented.
This book updates and greatly expands the author's previous book on semiparametric methods in econometrics. Nearly half of the material is new.
商品描述(中文翻譯)
標準的經濟學及其他許多領域的實證模型估計方法依賴於對函數形式和未觀察隨機變數分佈的強假設。通常,假設感興趣的函數是線性的,或未觀察的隨機變數是正態分佈的。這些假設簡化了估計和統計推斷,但很少受到經濟理論或其他先驗考量的支持。基於方便但不正確的函數形式和分佈假設的推斷可能會導致高度誤導的結果。非參數和半參數統計方法提供了一種減少估計和推斷所需假設強度的方法,從而減少獲得誤導性結果的機會。這些方法適用於實證經濟學和其他領域的各種估計問題,並且在應用研究中被越來越頻繁地使用。
有關非參數和半參數估計的文獻龐大且高度技術化。本書介紹了各種非參數和半參數方法的主要思想。它適合熟悉經濟計量學和統計理論的研究生和應用研究者,這些理論在頂尖大學的研究生課程中教授。本書強調思想而非技術細節,並提供盡可能直觀的闡述。實證例子說明了所介紹的方法。
本書更新並大幅擴展了作者之前關於經濟計量學中半參數方法的書籍。近一半的內容是新的。