Harmonic Analysis
暫譯: 諧波分析
Helson, Henry
- 出版商: Springer
- 出版日期: 1991-04-25
- 售價: $2,410
- 貴賓價: 9.5 折 $2,290
- 語言: 英文
- 頁數: 190
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0534155707
- ISBN-13: 9780534155704
-
相關分類:
離散數學 Discrete-mathematics
海外代購書籍(需單獨結帳)
相關主題
商品描述
The reader is assumed to know the elementary part of complex funCtion theory, general topology, integration, and linear spaces. All the needed information is contained in a usual first-year graduate course on analysis. These prerequisites are modest but essential. To be sure there is a big gap between learning the Banach-Steinhaus theorem, for example, and applying it to a real problem. Filling that gap is one of the objectives of this book. It is a natural objective, because integration theory and functional analysis to a great extent developed in response to the problems of Fourier series The exposition has been condensed somewhat by relegating proofs of some technical points to the problem sets. Other problems give results that are needed in subsequent sections; and many problems simply present interesting results of the subject that are not otherwise covered. Problems range in difficulty from very simple to very hard. The system of numeration is simple: Sec. 3. 2 is the second section of Chapter 3. The second section of the current chapter is Sec. 2. Formula (3. 2) is the second formula of Sec. 3, of the current chapter unless otherwise mentioned. With pleasure I record the debt to my notes from a course on Real Variables given by R. Salem in 1945. I wish to thank R. Fefferman, Y. Katznelson, and A. 6 Cairbre for sympathetic criti- cism of the manuscript. Mr. Carl Harris of the Addison-Wesley Publishing Company has been most helpful in bringing the book to publication.
商品描述(中文翻譯)
讀者應具備複變函數理論、一般拓撲學、積分學及線性空間的基本知識。所有所需的資訊都包含在一般的第一年研究生分析課程中。這些先修知識雖然不多,但卻是必不可少的。確實,學習巴拿赫-斯坦豪斯定理(Banach-Steinhaus theorem)與將其應用於實際問題之間存在著很大的差距。填補這一差距是本書的目標之一。這是一個自然的目標,因為積分理論和泛函分析在很大程度上是為了應對傅立葉級數(Fourier series)問題而發展起來的。內容的表述略有簡化,將某些技術點的證明移至習題集中。其他習題則提供了後續章節所需的結果;許多習題則呈現了該主題中有趣的結果,這些結果在其他地方並未涵蓋。習題的難度範圍從非常簡單到非常困難。編號系統很簡單:第3章的第2節為Sec. 3.2。本章的第二節為Sec. 2。公式(3.2)是本章第3節的第二個公式,除非另有說明。很高興能夠記錄我對1945年R. Salem教授所授的實變數課程筆記的感謝。我想感謝R. Fefferman、Y. Katznelson和A. Cairbre對手稿的建設性批評。Addison-Wesley出版社的Carl Harris先生在本書的出版過程中提供了極大的幫助。