Neural Network Design, 2/e (Paperback)
暫譯: 神經網絡設計(第二版)
Martin T Hagan, Howard B Demuth, Mark H Beale, Orlando De Jesús
- 出版商: Martin Hagan
- 出版日期: 2014-09-01
- 售價: $1,650
- 貴賓價: 9.8 折 $1,617
- 語言: 英文
- 頁數: 800
- 裝訂: Paperback
- ISBN: 0971732116
- ISBN-13: 9780971732117
-
相關分類:
DeepLearning、DeepLearning
-
相關翻譯:
神經網絡設計 (Neural Network Design, 2/e) (簡中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
類神經網路設計 (Neural Network Design)$720$684 -
ABAQUS 進階動力學 by APIC$350$315 -
Fundamentals of Data Structures in C, 2/e (Paperback)$1,390$1,362 -
Introduction to Algorithms, 3/e (IE-Paperback)$1,590$1,558 -
模具學 (修訂二版)$580$522 -
Python Essential Reference, 4/e (Paperback)$1,900$1,805 -
Artificial Intelligence: A Modern Approach, 3/e (IE-Paperback)$1,300$1,274 -
車輛運動力學 (修訂版)$500$450 -
Abaqus 最新實務入門
$650$618 -
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
AutoCAD 2014 電腦繪圖與絕佳設計表現 (機械/工業設計基礎) (附基礎功能影音教學/範例)$450$356 -
摩托車動力學$400$360 -
Computer Organization and Design: The Hardware/Software Interface, 5/e (Asian Edition)(IE-Paperback)$1,650$1,617 -
圖解模具製造, 2/e$320$288 -
Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (Hardcover)$1,390$1,362 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
$1,425Motors for Makers: A Guide to Steppers, Servos, and Other Electrical Machines(Paperback) -
$202深度學習:方法及應用 -
無線通訊系統概論 : 行動通訊與網路, 4/e (Introduction to Wireless and Mobile Systems, 4/e)$650$618 -
Make Your Own Neural Network (Paperback)$1,850$1,813 -
大演算:機器學習的終極演算法將如何改變我們的未來,創造新紀元的文明?(The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World)$620$527 -
Autodesk AutoCAD 2016 電腦繪圖與輔助設計 (含AutoCAD 2016認證模擬與解題)$520$411 -
$1,617Deep Learning (Hardcover) -
$505神經網絡設計 (Neural Network Design, 2/e) -
深度學習 (Deep Learning)(繁體中文版)$1,200$1,020
商品描述
This book, by the authors of the Neural Network Toolbox for MATLAB, provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems. Features Extensive coverage of training methods for both feedforward networks (including multilayer and radial basis networks) and recurrent networks. In addition to conjugate gradient and Levenberg-Marquardt variations of the backpropagation algorithm, the text also covers Bayesian regularization and early stopping, which ensure the generalization ability of trained networks. Associative and competitive networks, including feature maps and learning vector quantization, are explained with simple building blocks. A chapter of practical training tips for function approximation, pattern recognition, clustering and prediction, along with five chapters presenting detailed real-world case studies. Detailed examples and numerous solved problems. Slides and comprehensive demonstration software can be downloaded from hagan.okstate.edu/nnd.html.
商品描述(中文翻譯)
這本書由 MATLAB 的神經網路工具箱的作者撰寫,提供了對基本神經網路架構和學習規則的清晰且詳細的介紹。在書中,作者強調了主要神經網路的連貫呈現、訓練方法及其在實際問題中的應用。特點包括對前饋網路(包括多層網路和徑向基底網路)和遞迴網路的訓練方法的廣泛覆蓋。除了共軛梯度法和 Levenberg-Marquardt 變體的反向傳播演算法外,文本還涵蓋了貝葉斯正則化和早期停止,這些方法確保了訓練網路的泛化能力。關聯網路和競爭網路,包括特徵圖和學習向量量化,則用簡單的基本構件進行解釋。書中還有一章提供了功能近似、模式識別、聚類和預測的實用訓練技巧,以及五章詳細介紹現實案例研究的章節。書中包含詳細的範例和大量已解決的問題。幻燈片和全面的演示軟體可以從 hagan.okstate.edu/nnd.html 下載。
