Discrete Weak Kam Theory: An Introduction Through Examples and Its Applications to Twist Maps
暫譯: 離散弱卡姆理論:透過範例介紹及其在扭轉映射中的應用

Zavidovique, Maxime

  • 出版商: Springer
  • 出版日期: 2025-09-27
  • 售價: $3,350
  • 貴賓價: 9.5$3,183
  • 語言: 英文
  • 頁數: 188
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031968085
  • ISBN-13: 9783031968082
  • 相關分類: 離散數學 Discrete-mathematics
  • 海外代購書籍(需單獨結帳)

商品描述

The aim of this book is to present a self-contained account of discrete weak KAM theory. Putting aside its intrinsic elegance, this theory also provides a toy model for classical weak KAM theory, where many technical difficulties disappear, but where the central ideas and results persist. It therefore serves as a good introduction to (continuous) weak KAM theory. The first three chapters give a general exposition of the general abstract theory, concluding with a discussion of the relations between the results proved in the discrete setting and the analogous theorems of classical weak KAM theory. Several examples are studied and some key differences between the discrete and classical theory are highlighted. The final chapter is devoted to the historical problem of conservative twist maps of the annulus.

商品描述(中文翻譯)

本書的目的是提供一個獨立的離散弱 KAM 理論的介紹。撇開其內在的優雅性,這個理論還提供了一個古典弱 KAM 理論的玩具模型,在這個模型中,許多技術困難消失,但核心思想和結果仍然存在。因此,它作為(連續)弱 KAM 理論的良好入門。前三章對一般抽象理論進行了總體闡述,最後討論了在離散環境中證明的結果與古典弱 KAM 理論的類似定理之間的關係。研究了幾個例子,並突出了離散理論與古典理論之間的一些關鍵差異。最後一章專門討論了環形區域的保守扭轉映射的歷史問題。

作者簡介

Maxime Zavidovique studied mathematics at Ecole Normale Supérieure in Lyon, France. He completed his PhD in 2011, under the supervision of Albert Fathi. Since 2011 he has held an Assistant Professor position at Sorbonne Université (formerly Jussieu) in the IMJ-PRG laboratory. His research focuses on various versions of weak KAM theory (including the discrete and the classical ones), and convergence problems of solutions to approximations of the Hamilton-Jacobi equation.

作者簡介(中文翻譯)

Maxime Zavidovique 在法國里昂的高等師範學校(Ecole Normale Supérieure)學習數學。他於2011年在Albert Fathi的指導下完成博士學位。自2011年以來,他在索邦大學(Sorbonne Université,前身為Jussieu)IMJ-PRG實驗室擔任助理教授。他的研究專注於弱KAM理論的各種版本(包括離散和經典版本),以及哈密頓-雅可比方程的近似解的收斂問題。