機器學習經典算法實踐 (Python版)
李茜 盧星宇 吳斌 肖雲鵬
- 出版商: 清華大學
- 出版日期: 2022-05-01
- 定價: $294
- 售價: 7.9 折 $232
- 語言: 簡體中文
- ISBN: 7302597111
- ISBN-13: 9787302597117
-
相關分類:
Machine Learning
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
圖解密碼技術, 3/e$534$507 -
$507機器學習與深度學習算法基礎 -
$454Python 科學計算及實踐 -
$180機器學習公式詳解 -
輕鬆學自然語言處理-電腦這樣理解語言 (學AI真簡單系列3)$280$252 -
$454SaaS 商業實戰:好模式如何變成好生意 -
$305機器學習入門與實戰 — 基於 scikit-learn 和 Keras -
$454自然語言處理 NLP 從入門到項目實戰:Python 語言實現 -
$305Python 中文自然語言處理基礎與實戰 -
圖解有趣的生活統計學:零概念也能樂在其中!真正實用的統計學知識$400$340 -
$331集成學習入門與實戰:原理、算法與應用 -
數位與醫學的人工智慧影像處理技術:Python 實務$580$452 -
$539Python 自動化辦公與 RPA 從入門到實戰 -
Python FastAPI 構建數據科學應用$534$507 -
SaaS 創業之路:產品、營銷、服務、經營實踐與思考$419$398 -
$352scikit-learn 機器學習實戰 -
$254程序員的數學4:圖論入門 -
$403檢索匹配:深度學習在搜索、廣告、推薦系統中的應用 -
$469Serverless 架構下的 AI 應用開發:入門、實戰與性能優化 -
$469精通 Transformer : 從零開始構建最先進的 NLP 模型 -
$658高級 Python 核心編程開啟精通 Python 編程世界之旅 -
$505python核心編程:從入門到實踐:學與練 -
$560Python 開發實例大全 上捲 -
$560Python 開發實例大全 下捲 -
$564前端工程化 : 基於 Vue.js 3.0 的設計與實踐
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書的寫作目的旨在幫助大量正走在、或即將走向學習機器學習路上的廣大讀者朋友。我們在日常教學和培養研究生過程中發現,很多同學一方面想學、願意學;另一方面又遇到入門難的問題,希望能有一本書旨在幫助正走在或即將走向學習機器學習路上的廣大讀者朋友。我們在日常教學和培養研究生過程中發現,很多同學一方面想學、願意學; 另一方面又遇到入門難的問題,希望能有一本書、一本教材講原理、給數據、給源碼、給實驗,帶著入門。本著這樣一個初衷,我們選擇了機器學習領域析十大經典算法,把我們平常培養碩士研究生一年級剛入校學生的算法材料整理,開放提供給廣大希望學習的讀者朋友,寫一本機器學習入門級的學習材料。每章完整的源代碼掃描二維碼即可下載,每個算法一個Python工程,實驗數據就在每個工程的data文件夾下。代碼風格盡量保持一致,讓讀者更容易理解。 本書可作為高等學校各專業“機器學習”及相關課程的教學參考書。本書、一本教材講原理、給數據、給源碼、給實驗,帶著入門。
目錄大綱
目錄
●第1章KNN
1.1KNN算法原理
1.1.1算法引入
1.1.2科學問題
1.1.3算法流程
1.1.4算法描述
1.1.5補充說明
1.2KNN算法實現
1.2.1簡介
1.2.2核心代碼
1.3實驗數據
1.4實驗結果
1.4.1結果展示
1.4.2結果分析
●第2章樸素貝葉斯
2.1樸素貝葉斯算法原理
2.1.1樸素貝葉斯算法引入
2.1.2科學問題
2.1.3算法流程
2.1.4算法描述
2.1.5算法補充
2.2樸素貝葉斯算法實現
2.2.1簡介
2.2.2核心代碼
2.3實驗數據
2.4實驗結果
2.4.1結果展示
2.4.2結果分析
●第3章C4.5
3.1C4.5算法原理
3.1.1C4.5算法引入
3.1.2科學問題
3.1.3算法流程
3.1.4算法描述
3.1.5補充說明
3.2C4.5算法實現
3.2.1簡介
3.2.2核心代碼
3.3實驗數據
3.4實驗結果
3.4.1結果展示
3.4.2結果分析
●第4章SVM
4.1SVM算法原理
4.1.1算法引入
4.1.2科學問題
4.1.3算法流程
4.1.4算法描述
4.1.5補充說明
4.2SVM算法實現
4.2.1簡介
4.2.2核心代碼
4.3實驗數據
4.4實驗結果
4.4.1結果展示
4.4.2結果分析
●第5章AdaBoost
5.1AdaBoost算法原理
5.1.1算法引入
5.1.2科學問題
5.1.3算法流程
5.1.4算法描述
5.1.5補充說明
5.2AdaBoost算法實現
5.2.1簡介
5.2.2核心代碼
5.3實驗數據
5.4實驗結果
5.4.1結果展示
5.4.2結果分析
●第6章CART
6.1CART算法原理
6.1.1算法引入
6.1.2科學問題
6.1.3算法流程
6.1.4算法描述
6.1.5補充說明
6.2CART算法實現
6.2.1簡介
6.2.2核心代碼
6.3實驗數據
6.4實驗結果
6.4.1結果展示
6.4.2結果分析
●第7章KMeans
7.1KMeans算法原理
7.1.1算法引入
7.1.2科學問題
7.1.3算法流程
7.1.4算法描述
7.1.5補充說明
7.2KMeans算法實現
7.2.1簡介
7.2.2核心代碼
7.3實驗數據
7.4實驗結果
7.4.1結果展示
7.4.2結果分析
●第8章Apriori
8.1Apriori算法原理
8.1.1算法引入
8.1.2科學問題
8.1.3算法流程
8.1.4算法描述
8.2Apriori算法實現
8.2.1簡介
8.2.2核心代碼
8.3實驗數據
8.4實驗結果
8.4.1結果展示
8.4.2結果分析
●第9章PageRank
9.1PageRank算法原理
9.1.1PageRank算法引入
9.1.2科學問題
9.1.3算法流程
9.1.4算法描述
9.2PageRank算法實現
9.2.1簡介
9.2.2核心代碼
9.3實驗數據
9.4實驗結果
9.4.1結果展示
9.4.2結果分析
●第10章EM
10.1EM算法原理
10.1.1EM算法的引入
10.1.2科學問題
10.1.3理論推導
10.1.4算法流程
10.1.5算法描述
10.2EMGMM實現
10.2.1簡介
10.2.2核心代碼
10.3實驗數據
10.4實驗結果
10.4.1結果展示
10.4.2結果分析



