Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data
            
暫譯: 金融服務中的數據質量工程:將製造技術應用於數據
        
        Buzzelli, Brian
- 出版商: O'Reilly
 - 出版日期: 2022-11-29
 - 定價: $2,280
 - 售價: 9.5 折 $2,166
 - 貴賓價: 9.0 折 $2,052
 - 語言: 英文
 - 頁數: 174
 - 裝訂: Quality Paper - also called trade paper
 - ISBN: 1098136934
 - ISBN-13: 9781098136932
 - 
    相關分類:
    
      Data Science、Data-mining
 
立即出貨 (庫存 < 4)
買這商品的人也買了...
- 
                
                  
                  
                簡報原力 ─ 邁向完美簡報的十堂必修課$320$272 - 
                
                  
                  
                Data Science from Scratch|用 Python 學資料科學, 2/e (中文版)(Data Science from Scratch: First Principles with Python, 2/e)$680$537 - 
                
                  
                  
                量子霸權(Quantum Supermacy)世界大戰開打:量子電腦真的來了$600$474 - 
                
                  
                  
                Machine Learning for Algorithmic Trading, 2/e (Paperback)$2,100$1,995 - 
                
                  
                  
                $2,592Artificial Intelligence in Finance: A Python-Based Guide - 
                
                  
                  
                Mastering Financial Pattern Recognition: Finding and Back-Testing Candlestick Patterns with Python$2,641$2,502 - 
                
                  
                  
                $1,980Training Data for Machine Learning: Human Supervision from Annotation to Data Science - 
                
                  
                  
                內網滲透實戰攻略$594$564 - 
                
                  
                  
                Power BI x Copilot x ChatGPT 商業報表設計入門:資料清理、資料模型、資料視覺化到報表共享建立全局觀念$630$498 - 
                
                  
                  
                Deep Learning for Finance: Creating Machine & Deep Learning Models for Trading in Python$2,195$2,079 - 
                
                  
                  
                AI 神助攻!程式設計新境界 – GitHub Copilot 開發 Python 如虎添翼 : 提示工程、問題分解、測試案例、除錯$560$442 - 
                
                  
                  
                生成式 AI:以 ChatGPT 與 OpenAI 模型實現高效創新 (Modern Generative AI with ChatGPT and OpenAI Models)$500$395 - 
                
                  
                  
                資料科學:困難部分 (Data Science: The Hard Parts: Techniques for Excelling at Data Science)$680$537 - 
                
                  
                  
                Python x AI 辦公室作業自動化 : Word、Excel、PowerPoint、PDF、CSV、Pandas -- 多執行緒、排程、藝術二維碼、短網址、電子郵件、爬蟲$880$695 - 
                
                  
                  
                Machine Learning Production Systems: Engineering Machine Learning Models and Pipelines (Paperback)$2,565$2,430 - 
                
                  
                  
                $2,520AI Engineering : Building Applications with Foundation Models (Paperback) - 
                
                  
                  
                讓 AI 好好說話!從頭打造 LLM (大型語言模型) 實戰秘笈$680$537 - 
                
                  
                  
                生成式 AI 入門 – 揭開 LLM 潘朵拉的秘密 : 語言建模、訓練微調、隱私風險、合成媒體、認知作戰、社交工程、人機關係、AI Agent、OpenAI、DeepSeek (Introduction to Generative AI)$580$458 - 
                
                  
                  
                版本控制使用 Git, 3/e (Version Control with Git: Powerful Tools and Techniques for Collaborative Software Development, 3/e)$880$695 - 
                
                  
                  
                Microsoft Azure 學習手冊|雲端運算與雲端系統開發的關鍵知識 (Learning Microsoft Azure: Cloud Computing and Development Fundamentals)$880$695 - 
                
                  
                  
                Microsoft Azure AI Services 與 Azure OpenAI 開發基礎必修課 -- 使用 C#$550$435 - 
                
                  
                  
                AI 應用程式開發|活用 ChatGPT 與 LLM 技術開發實作, 2/e (Developing Apps with GPT-4 and ChatGPT: Build Intelligent Chatbots, Content Generators, and More, 2/e)$680$537 
商品描述
Data quality will either make you or break you in the financial services industry. Missing prices, wrong market values, trading violations, client performance restatements, and incorrect regulatory filings can all lead to harsh penalties, lost clients, and financial disaster. This practical guide will provide provide data analysts, data scientists, and data practitioners in financial services firms with the framework to apply manufacturing principles to financial data management, understand data dimensions, and engineer precise data quality tolerances at the datum level and integrate them into your data processing pipelines.
You'll get invaluable advice on how to:
- Evaluate data dimensions and how they apply to different data types and use cases
 - Determine data quality tolerances for your data quality specification
 - Choose the points along the data processing pipeline where data quality should be assessed and measured
 - Apply tailored data governance frameworks within a business or technical function or across an organization
 - Precisely align data with applications and data processing pipelines
 - And more
 
商品描述(中文翻譯)
資料品質在金融服務業中將決定你的成敗。缺失的價格、錯誤的市場價值、交易違規、客戶表現重述以及不正確的監管申報都可能導致嚴厲的處罰、客戶流失和財務災難。本實用指南將為金融服務公司的資料分析師、資料科學家和資料從業人員提供一個框架,以將製造原則應用於金融資料管理,理解資料維度,並在數據層面上工程化精確的資料品質容忍度,並將其整合到你的資料處理管道中。
你將獲得寶貴的建議,學習如何:
- 評估資料維度及其如何應用於不同的資料類型和使用案例
- 確定你的資料品質規範的資料品質容忍度
- 選擇資料處理管道中應該評估和測量資料品質的點
- 在業務或技術功能內部或跨組織應用量身定制的資料治理框架
- 精確對齊資料與應用程式及資料處理管道
- 以及更多內容